3.4: Entropie au sein de la cellule

Entropy within the Cell
JoVE Core
Cell Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Cell Biology
Entropy within the Cell

10,714 Views

01:22 min
April 30, 2023

Overview

A living cell's primary tasks of obtaining, transforming, and using energy to do work may seem simple. However, the second law of thermodynamics explains why these tasks are harder than they appear. None of the energy transfers in the universe are completely efficient. In every energy transfer, some amount of energy is lost in a form that is unusable. In most cases, this form is heat energy. Thermodynamically, heat energy is defined as the energy transferred from one system to another that is not work. For example, some energy is lost as heat energy during cellular metabolic reactions.

An important concept in physical systems is that of order and disorder. The more energy that is lost by a system to its surroundings, the less ordered and more random the system is. Scientists refer to the measure of randomness or disorder within a system as entropy. High entropy means high disorder and low energy. Molecules and chemical reactions have varying entropy as well. For example, entropy increases as molecules at a high concentration in one place diffuse and spread out.

Living things are highly ordered, requiring constant energy input to be maintained in a state of low entropy. As living systems take in energy-storing molecules and transform them through chemical reactions, they lose some amount of usable energy in the process because no reaction is completely efficient. They also produce waste and by-products that are not useful energy sources. This process increases the entropy of the system's surroundings. Since all energy transfers result in the loss of some usable energy, the second law of thermodynamics states that every energy transfer or transformation increases the entropy of the universe. Even though living things are highly ordered and maintain a state of low entropy, the entropy of the universe in total is constantly increasing due to the loss of usable energy with each energy transfer that occurs. Essentially, living things are in a continuous uphill battle against this constant increase in universal entropy.

This text is adapted from Openstax Biology 2e, Section 6.3 The Laws of Thermodynamics.

Transcript

Les cellules vivantes suivent la deuxième loi de la thermodynamique, qui stipule que les systèmes ont tendance à passer d’états ordonnés à faible entropie à des états désordonnés à entropie élevée sans apport extérieur.

Par exemple, le transport passif de l’oxygène concentré des poumons vers le sang moins oxygéné disperse les molécules d’oxygène, augmentant ainsi l’entropie du système.

Les cellules tirent leur énergie de la dégradation de molécules telles que le glucose. Les sous-produits de la réaction – dioxyde de carbone, eau et chaleur – sont libérés dans l’environnement, augmentant son entropie.

La survie cellulaire dépend de systèmes hautement ordonnés tels que l’ADN et les protéines. La formation de ces structures ordonnées provoque une diminution de l’entropie du système, qui doit être accompagnée d’une augmentation égale ou supérieure de l’entropie de l’environnement.

Les brins d’ADN simples sont désordonnés et leur entropie diminue lorsqu’ils se renouvellent en une structure ordonnée à double hélice.

Dans le même temps, l’énergie est libérée dans l’environnement lors de la formation d’une double hélice. Cette énergie rend l’environnement plus désordonné et augmente son entropie.

Key Terms and definitions​

Learning Objectives

Questions that this video will help you answer

This video is also useful for