Using a 3D printer, a shape memory polymer filament is extruded to form a branched tubular structure. The structure is patterned and shaped such that it can contract into a compact form once folded and then return to its formed shape when heated.
Branched vessels, typically in the form of the letter "Y," can be narrowed or blocked, resulting in serious health problems. Bifurcated stents, which are hollow in the interior and exteriorly shaped to the branched vessels, surgically inserted inside the branched vessels, act as a supporting structure so that bodily fluids can freely travel through the interior of the stents without being obstructed by the narrowed or blocked vessels. For a bifurcated stent to be deployed at the target site, it needs to be injected inside the vessel and travel within the vessel to reach the target site. The diameter of the vessel is much smaller than the bounding sphere of the bifurcated stent; thus, a technique is required so that the bifurcated stent remains small enough to travel through the vessel and expands at the targeted branched vessel. These two conflicting conditions, that is, small enough to pass through and large enough to structurally support narrowed passages, are extremely difficult to satisfy simultaneously. We use two techniques to fulfill the above requirements. First, on the material side, a shape memory polymer (SMP) is used to self-initiate shape changes from small to large, that is, being small when inserted and becoming large at the target site. Second, on the design side, a kirigami pattern is used to fold the branching tubes into a single tube with a smaller diameter. The presented techniques can be used to engineer structures that can be compacted during transportation and return to their functionally adept shape when activated. Although our work is targeted on medical stents, biocompatibility issues need to be solved before actual clinical use.
Stents are used to widen narrowed or stenosed passages in humans, such as blood vessels and airways. Stents are tubular structures that resemble the passages and mechanically support the passages from further collapsing. Typically, self-expanding metal stents (SEMS) are widely adopted. These stents are made from alloys composed of cobalt-chromium (stainless-steel) and nickel-titanium (nitinol)1,2. The downside of metal stents is that pressure necrosis can exist where the metal wires of the stent come into contact with the live tissues and the stents are impacted. Furthermore, the vessels of the body can be irregularly shaped and are much more complex than simple tubular structures. In particular, there are many specialized clinical procedures to install stents in branched lumens. In a Y-shaped lumen, two cylindrical stents are simultaneously inserted and joined at a branch3. For each additional branch, an additional surgical procedure needs to be conducted. The procedure requires specially trained doctors, and the insertion is extremely challenging due to the protruding features of the branched stents.
The complexity of the shape of bifurcated stents makes it a very suitable target for 3D printing. Conventional stents are mass produced in standardized sizes and shapes. Using the 3D printing fabrication methodology, it is possible to customize the shape of the stent for each patient. Because shapes are made by repeatedly adding layer-by-layer of the sectional shapes of the target object, in theory, this method can be used to fabricate parts of any shape and size. Conventional stents are mostly cylindrical in shape. However, human vessels have branches, and the diameters change along the tubes. Using the proposed approach, all these variations in shapes and sizes can be accommodated. Additionally, although not demonstrated, the used materials can also change within a single stent. For example, we can use stiffer materials where support is needed and softer materials where more flexibility is required.
The shape changing requirement of bifurcated stents calls for 4D printing, namely, 3D printing with the additional consideration of time. 3D printed structures formed using specialized materials can be programmed to change their shape by an external stimulation, such as heat. The transformation is self-sustained and requires no external power sources. One special material that is suitable for 4D printing is an SMP4,5,6,7,8,9, which exhibits shape memory effects when exposed to a material-specific triggering glass transition temperature. At this temperature, the segments become soft so that the structure returns to its original shape. After the structure is 3D printed, it is heated to a temperature slightly above the glass transition temperature. At this point, the structure becomes soft, and we are able to deform the shape by applying forces. While maintaining the applied forces, the structure is cooled down, becomes hardened and retains its deformed shape, even after the applied forces are removed. Subsequently, at the final stage, when the structure needs to return to its original shape, such as the moment when the structure reaches the target site, heat is supplied so that the structure reaches its glass transition temperature. Finally, the structure returns to its memorized original shape. Figure 1 illustrates the various stages previously explained. The SMPs can be easily stretched, and there are some SMPs that are biocompatible and biodegradable9,10. There are many uses for SMPs in the field of medicine9,10, and stents11,12 are one of them.
The patterns of the stents and the folding design follow the Japanese paper cutting design called "kirigami." This process resembles the well-known paper folding technique called "origami," but the difference is that in addition to folding, cutting of the paper is also allowed in the design. This technique has been used in arts and has also been applied in engineering applications2,3,13,14. In short, kirigami can be used to transform a planar structure to a three-dimensional structure by applying forces at specifically designed spots. In our design requirements, the stent needs to be a simple cylindrical shape when inserted into the pathways, and the cylinder should divide along its length where each half should unfold to a fully cylindrical shape at the targeted branched vessel. The solution lies in the fact that the main vessel and the side branches are folded into a single cylinder such that the side branches will not interfere with the walls of the vessels during the insertion. The unfolding command signal comes from the increase in the ambient temperature above the glass transition temperature of the SMP. Additionally, the folding will be conducted outside the patient body by softening the 3D printed bifurcated stent and folding the side branch into the main vessel.
Conventional methods required the insertion of multiple cylindrical stents whose number equals the number of branches. This method was inevitable because the protrusions of the side branches hampered the walls of the pathways and made it impossible to insert a complete bifurcated stent in its entirety. Using the kirigami structure and 4D printing, the above problems can be resolved. This protocol also shows the visualization of the effectiveness of the proposed method using a silicone vessel model fabricated after the shape of blood vessels. Through this mock-up, the effectiveness of the proposed invention during the insertion process and further possibilities of new applications can be seen.
The purpose of this protocol is to clearly outline the steps involved in printing an SMP using a fused deposition modeling (FDM) printer. Additionally, techniques involved in deforming the printed bifurcated stents to the folded state, the insertion of the folded bifurcated stents to the target site, and the signaling and unfolding of the structure to its original shape are given in detail. The demonstration of the insertion utilizes a silicone mock-up of blood vessels. The protocol also provides the procedures involved in fabricating this mock-up using a 3D printer and molding.
Stents are often used to clear the clogged internal pathways such as the blood vessels and airways of patients. Surgical operation of inserting stents requires the careful consideration of the patient’s illness and human anatomical characteristics. The shape of the vessel is complex, and diverse branching conditions exist. However, the standard stent operational procedures are based on mass-produced stents with standard sizes. In this protocol, we showed how to personally tailor the fabrication of the stent based o…
The authors have nothing to disclose.
This work was supported by the Institute of Information & Communications Technology Planning and Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2018-0-01290, the Development of an open dataset and cognitive processing technology for the recognition of features derived from unstructured humans (police officers, traffic safety officers, pedestrians, etc.) motions used in self-driving cars) and the GIST Research Institute (GRI) grant funded by the GIST in 2019.
Fortus380mc | Stratasys | Fortus 380mc | FDM 3D printer for printing blood vessel mock-up |
Moment1 3D printer | Moment | Moment 1 | FDM 3D printer for printing bifurcated stent |
PC(white) Filament Canister | Stratasys | PC(white) Filament Canister | PC filament for printing blood vessel mock-up |
PLM software NX 10.0 | Siemens | NX 10.0 | 3D CAD modeling software |
Sandpaper | DAESUNG | CC-600CW | Smooting out the surface of the bifurcated stent |
Shape Memory Polymer filament | SMP Technologies Inc | MM-5520 | Shape memory polymer filament |
silicon | Shinetus | KE-1606 | silicon for blood vessel mock-up |
Simplify3D | Simplify3D | Simplify3D 4.0.1 | Slicing software for model slicing |