光学顕微鏡は、多くの実験で利用される装置であり、サンプルを1000倍まで拡大して観察することができます。最も単純な顕微鏡は、サンプルを拡大するための透明なレンズとサンプルに照射するための光源で構成されますが、実験で使用する光学顕微鏡の構造はもっと複雑です。多くの光学顕微鏡には、対物レンズや接眼レンズをはじめ精密に空間を調節できる精巧なレンズが内蔵されています。このビデオでは、光学顕微鏡の基本パーツやその使い方と機能について詳しく解説し、また、倍率、焦点、分解能などの基本原理を紹介しています。基本的な光学顕微鏡の操作は、サンプルに光を照射し、質の高い画像を得るために光源の強さや方向を調節することから始めます。次に、サンプルを適切に拡大し、観察ポイントにピントを合わせます。光学顕微鏡は多用途であり、染色の有無にかかわらず細胞や組織の観察するとき、サンプルの細部を解剖するときなどに使用されます。さらには手術中に目的領域を拡大し細かく複雑な作業を円滑に進めるためにも光学顕微鏡が活躍しています。
光学顕微鏡は、サンプルを拡大して観察するための装置です。光学顕微鏡を利用するとサンプルを1000倍まで拡大して観察することができ、非常に有用な解析ツールとなります。光学顕微鏡の操作は簡単で、多くの実験に用いることができる優れものです。
名前からも分かるように光学顕微鏡には光源があり、コンデンサレンズを用いることでサンプルに焦点を当てることができます。
サンプルに照射された光は、対物レンズに達し倒立の拡大像が作り出されます。接眼レンズによりさらに拡大された像が作られ、それを観察することができます。光路にさらなる光学部品を配置することで正しい向きの像を観察できます。このように複数のレンズが組み合わされた顕微鏡のことを複合顕微鏡と呼びます。
複合顕微鏡の倍率は、対物レンズの倍率と接眼レンズの倍率を掛け合わせた値になります。例えば40倍の対物レンズと10倍の接眼レンズを使用するときの総合倍率は400倍です。
顕微鏡下で物体の大きさを推定するために、視野にスケールを映し出すレチクルを使用します。高倍率にすると、レチクルの一目盛りは、低倍率のときと比べて小さくなります。
倍率に加え、分解能も顕微鏡の重要な要素となります。分解能とは、顕微鏡下で微小な2点を識別可能な最小の距離のことです。これらキャラクターの頭がはっきり見えるほど、分解能が高いと言え、彼らを識別できる最小距離は小さくなります。
光学顕微鏡の基本となるパーツは、対物レンズ、接眼レンズ、サンプルをのせるステージとホルダー、光源、視野絞り、コンデンサと開口絞り、粗野及び微動ハンドルです。
中でも対物レンズは、倍率と分解能を決める最も重要な機器です。回転式のレボルバーに取り付けることで、焦点面を変えずに、つまり焦点を合わせたままでレンズを切り替えることができます。対物レンズには、倍率、対物レンズの開口数すなわちNA、液浸用の液体の種類、使用すべきカバーガラスの厚さ、作動距離つまり焦点を合わせた時のレンズ先端からサンプルまでの距離が記載されています。
開口数又はNAによって、対物レンズがどれだけ多くの光を取り入れられるかが決まります。開口数が大きいほど、広範囲の光を集められ、小さいほど直斜光のみが取り入れられます。対物レンズの分解能は、波長と開口数から求めることができます。
光源、視野絞り、開口絞り、コンデンサによって、サンプルに照射する光が作り出されます。
一般的な光源は、低電圧ハロゲンランプで、光強度を調整することができます。光は様々なフィルターを通過し、視野絞りでサンプルにあたる光の範囲を調整できます。通過した光はコンデンサによって集められ、サンプルに照射されます。照射される円錐状の光はコンデンサを使ってコントロールでき、使用する対物レンズに応じて調整する必要があります。
実際に光学顕微鏡を使ってみましょう。まずはサンプルを顕微鏡のステージの上に置き、観察対象物が対物レンズの真下にくるようにクリップで固定します。
次に、光源のスイッチを入れ、低倍率の対物レンズを選択します。
対物レンズを粗動ハンドルを使ってステージから遠ざける方向に動かしピントを合わせます。次に微動ハンドルを使ってしっかりとピントを合わせます。このときスライドやステージに接触してレンズを破損しないように注意してください。
接眼レンズを覗いて、ハンドルで調整しながらスライドを動かし観察ポイントを見つけ出します。低倍率から高倍率に切り替えると、視野は大幅に狭くなります。低倍率の対物レンズの真下で観察ポイントを決定してから、高倍率の対物レンズに切り替えることで、目的の検体を見つけやすくなります。
低倍率でフォーカスしたあとに高倍率に切り替える方法で、画像を取得してください。
照明を最適化するには、最初に視野絞りを使ってしぼり自体が視野に入り込まないようにセットします。
次に、コンデンサ絞りを調整し、対物レンズの開口数と一致させます。
最後にもう一度ピントを合わせます。このときは微動ハンドルのみを使用して下さい。これで画像が取得できました。
光学顕微鏡は、いろいろなサンプルの観察を可能にする機器であり、用途に応じて最適化された様々な複合顕微鏡があります。
これは手術用顕微鏡での作業準備をしているところです。この顕微鏡は可動式のアームに取り付けられており、立体視観察ができます。また、顕微鏡にはカメラが搭載されています。この手術用顕微鏡は、マウスへの腎移植を行う際に用いられます。
ここでは、研究者が解剖顕微鏡を覗きながら、ショウジョウバエの幼虫を選別しています。その後解剖して体壁筋を完璧に取り出し、神経筋接合部の研究を行います。
これは倒立顕微鏡です。対物レンズはステージの下に配置されており、マイクロインジェクション法に対応できます。体細胞核移植として知られるこの手法は、トランスジェニック動物やクローンを作製するための重要なテクニックです。
ここまでJoVE光学顕微鏡編をご覧いただきました。このビデオでは、光学顕微鏡の概要、使用方法、構造、調整の仕方、画像の取得方法を紹介しました。ご覧いただきありがとうございました。
The light microscope is an instrument used for magnifying research specimens. Light microscopes are an invaluable analytical tool that have the potential to allow scientific investigators to view objects at 1000 times their original size. As you will see, the light microscope operates via some very basic principles but has nearly limitless applications for visualizing specimens in the lab.
As its name implies the light microscope requires a light source, which produces light that can be focused, by a condenser lens, onto the sample.
The light that illuminates the specimen reaches a lens known as the objective lens, which creates a magnified image that is inverted, or turned upside down. The eyepiece, or ocular lens, further magnifies the image, which the eye then receives. Additional optical elements can be introduced into the light path to right the image, so that the eye sees it in the correct orientation. Microscopes that utilize multiple lenses like the one you see here are referred to as compound microscopes.
In a compound microscope, the total magnification is calculated by multiplying the magnification of the objective lens by the magnification of the ocular lens, or eye piece. With a 40X objective lens and a 10X ocular lens, the total magnification is 400X.
To help estimate the size of objects under the microscope, an eyepiece reticle, a scale that’s projected over the image can be used. At higher magnification, the tick marks in the eyepiece reticle will represent smaller distances, than when viewed at lower magnifications.
In addition to magnification, another aspect of microscope optics is resolution. Resolution refers to the shortest resolvable distance between two objects under the scope. As the heads of these characters becomes more and more clear, and the resolution increases, the shortest observable distance between them decreases.
The main components of the light microscope include the objectives, the eyepieces, the specimen stage and specimen holder, the light source, the field diaphragm, the condenser and aperture, and the coarse and fine focus knobs.
The objectives are responsible for most of the magnification and resolution of the microscope. They are mounted on a rotating nosepiece in such a way that as the objectives are changed, the focal plane stays the same – a property referred to as parafocality. An objective can be marked with the magnification, the numerical aperature, or N.A., the type of immersion medium required, the coverslip thickness that should be used when mounting samples, and the working distance – the distance from the tip of the lens element to the focal plane in the sample.
The numerical aperture, again, defined as N.A., is a measure of how well a microscope objective can gather light. High N.A. objectives allow light at oblique angles to pass through while low N.A.objectives require more direct light. The resolution of an objective can be calculated from the numerical aperture, given the wavelength of light.
The light source, field diaphragm, aperture, and condenser are all responsible for producing the light and delivering it to the sample.
The light source is typically a low voltage halogen bulb that can be adjusted to control light intensity.
The light then passes through a variety of filters and into the field diaphragm, which controls the area of the specimen to be illuminated.
Next is the condenser, which focuses bright, light on the specimen, the cone of illumination around the specimen is controlled by the condenser and must be adjusted depending on the objective that’s used.
To begin using the light microscope, place a sample containing the region of interest on the microscope stage, center it directly over the objective, and secure it into place using the stage clips.
Next, turn on the light source and switch to the lowest powered objective.
Next, focus the low powered objective by moving it in the z-direction using an initial adjustment of the coarse adjustment knob, and then rotating the fine adjustment knobs to bring the object in sharp focus. Take care not to hit the slide or stage with the objective as this could damage the lens.
Then, locate the area of interest by looking through the eye pieces while adjusting the knobs to move the slide in the x and y directions. The size of the field of view will decrease drastically as you move from a low magnification, to higher magnification.
Centering the lowest powered objective on the area of interest before moving to higher power greatly increases the chances of finding the desired specimen.
Once the sample has been located at low power and is in focus, move to the higher power objective that will be used for acquiring images.
Optimize the quality of the lighting by first adjusting the field diaphragm so that the diaphragm itself is just outside of the field of view.
Next, adjust the condenser diaphragm so that the settings match the numerical aperture of the objective in use.
Finally, adjust the focus again. This time only using the fine adjustment knob.
You are now ready to take images of your specimen.
Light microscopy has the potential to visualize a wide range of specimens, and various configurations of the compound microscope exists to suit many different applications.
Here, you see a researcher preparing to work under a surgical microscope. These microscopes are generally suspended on a movable arm and are stereoscopic, meaning that they allow light to pass to the viewer and also a camera mounted on the microscope. This surgical microscope is being used in a kidney transplantation procedure, in mice.
In this clip, you see a researcher looking through a dissecting microscope, while picking out the perfect drosophila larvae for further dissection , in order to expose the body wall muscles so the neuromuscular junction can be studied.
Here you can see an inverted compound microscope, which has an objective below the stage, being prepared for a microinjection technique. This procedure, known as somatic cell nuclear transfer, is an important method for generating transgenic animals and creating clones.
You’ve just watched JoVE’ introduction to Light Microscopy.
In this video we reviewed: what a microscope is and how it works, its many components, how to make adjustments to them, and how to acquire quality images. Thanks for watching!
General Laboratory Techniques
484.9K 閲覧数
General Laboratory Techniques
125.4K 閲覧数
General Laboratory Techniques
215.0K 閲覧数
General Laboratory Techniques
210.4K 閲覧数
General Laboratory Techniques
575.5K 閲覧数
General Laboratory Techniques
218.1K 閲覧数
General Laboratory Techniques
205.3K 閲覧数
General Laboratory Techniques
149.7K 閲覧数
General Laboratory Techniques
170.4K 閲覧数
General Laboratory Techniques
514.8K 閲覧数
General Laboratory Techniques
239.7K 閲覧数
General Laboratory Techniques
348.9K 閲覧数
General Laboratory Techniques
812.6K 閲覧数
General Laboratory Techniques
65.4K 閲覧数
General Laboratory Techniques
81.0K 閲覧数