This protocol shows how to perform cytoplasmic microinjection in farm animal zygotes. This technique can be used to deliver any solution into the one-cell embryo such as genome editing tools to generate knockout animals.
Cytoplasmic microinjection into one-cell embryos is a very powerful technique. As an example, it enables the delivery of genome editing tools that can create genetic modifications that will be present in every cell of an adult organism. It can also be used to deliver siRNA, mRNAs or blocking antibodies to study gene function in preimplantation embryos. The conventional technique for microinjecting embryos used in rodents consists of a very thin micropipette that directly penetrates the plasma membrane when advanced into the embryo. When this technique is applied to livestock animals it usually results in low efficiency. This is mainly because in contrast to mice and rats, bovine, ovine, and porcine zygotes have a very dark cytoplasm and a highly elastic plasma membrane that makes visualization during injection and penetration of the plasma membrane hard to achieve. In this protocol, we describe a suitable microinjection method for the delivery of solutions into the cytoplasm of cattle zygotes that has proved to be successful for sheep and pig embryos as well. First, a laser is used to create a hole in the zona pellucida. Then a blunt-end glass micropipette is introduced through the hole and advanced until the tip of the needle reaches about 3/4 into the embryo. Then, the plasma membrane is broken by aspiration of cytoplasmic content inside the needle. Finally, the aspirated cytoplasmic content followed by the solution of interest is injected back into the embryonic cytoplasm. This protocol has been successfully used for the delivery of different solutions into bovine and ovine zygotes with 100% efficiency, minimal lysis, and normal blastocysts development rates.
Cytoplasmic microinjection of 1-cell embryos is a very powerful technique. It can be used for delivering any solution into the embryo to, for example, produce gene knock-outs to study gene function or to generate gene-edited animals. Most agriculturally-relevant farm animal zygotes have a very high fatty acid composition that makes their cytoplasm opaque and dark1. They also have a fairly elastic plasma membrane (PM). These characteristics make microinjection using conventional pronuclear/cytoplasmic injection as used in rodent species challenging and often inaccurate.
Cytoplasmic microinjection has advantages over pronuclear microinjection since it is easier to perform and also causes less damage to the injected embryos, resulting in higher viability2. The overall goal of this protocol is to demonstrate a successful method for delivering solutions into the cytoplasm of farm animal zygotes. To be able to perform cytoplasmic microinjection with high efficiency on livestock embryos, a laser is used to generate a hole in the zona pellucida (ZP) and then a blunt-end glass needle is used for the microinjection. This strategy aims to reduce the mechanical damage imprinted on the embryo during injection. Then, aspiration of cytoplasmic content inside the injection needle allows efficient and confident breakage of the PM ensuring that the solution is delivered into the cytoplasm of the embryo.
This technique has already been successfully used in bovine embryos to deliver siRNA into the zygotic cytoplasm3,4 and to generate mutations using the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated system 9 (Cas9) system5. It is also suitable (with minor modifications) to inject bovine cumulus-enclosed oocytes6. Here, we describe our injection protocol delivering a dye, that can be applicable to injecting any desired solution into the zygote, and show that using this technique causes minimal lysis and does not affect early embryo development.
Microinjection of zygotes is a well-established method for introducing solutions into mammalian embryos. With some variations dependent on the species and the aim of the experiment, this technique can be broadly used. We show how to perform intracytoplasmic microinjection using a laser to assist the entrance of a blunt-end micropipette. Zygotes of some livestock species (such as cattle, sheep, and pig) have a dark cytoplasm, hindering the visualization of the injection pipette once inside the embryo. Also, their plasma m…
The authors have nothing to disclose.
Work related to this technique is supported by NIH/NICHD RO1 HD070044 and USDA/NIFA Hatch projects W-3171 and W-2112.
Micropipette puller | Sutter Instrument | P-97 | |
Glass capillary | Sutter instruments | B100-75-10 | These capillaries are used for making the holding and injecting pipettes. Any thick/standard wall borosilicate tubing without filament can be used. |
Microforge | Narishige | MF-9 | Equipped with 10X magnification lense. |
Micromanipulator | Nikon/ Narishige | NT88-V3 | |
Inverted microscope | Nikon | TE2000-U | Equipped with 4x, 20x lenses and with a laser system. |
Laser | Research Instruments | 7-47-500 | Saturn 5 Active laser. |
Microdispenser | Drummond | 3-000-105 | The microdispenser is used to move the embryos. A p10 pipette can also be used but loading as minimal volume as possible. |
60mm culture dish | Corning | 430166 | Use the lid of the dish to make the injection plate since they have lower walls and will make positioning and moving of the micropipettes with the micromanipulator easier. |
35mm culture dish | Corning | 430165 | These dishes are used for culturing the embryos in 50μl drops covered with mineral oil. Alternatively, a 4 well dish can also be used. Regardless of the dish chosen to culture the embryos, they always have to be equilibrated in the incubator for at least 4 hours prior to transfering the embryos to them. |
Incubator | Sanyo | MCO-19AIC | Any incubator that can be set to 38.5°C 5% CO2 conditions can be used. |
Stereomicroscope | Nikon | SMZ800 | Used for visualizing the embryos in the culture drops and during washes. Any stereomicroscope with a 10x magnification can be used. |
Control Unit HT | Minitube | 12055/0400 | Heating system attached to the stereomicroscope. |
Heated Microscope Stage | Minitube | 12055/0003 | Heating system attached to the stereomicroscope. |
Dextran-Red | Thermo Scientific | D1828 | A sterile 10mg/ml solution is used to inject. |
Mineral Oil | sigma | M8410 | Keep the mineral oil at room temperature and protected from light using foil paper. |
KSOMaa Evolve Bovine | Zenit | ZEBV-100 | Supplemented with 4mg/ml BSA. KSOM plates for embryo culture should be equilibrated in an incubator for at least 4 hours before use. |
FBS | Gemini-Bio | 100-525 | Use a stem-cell qualified FBS. |
Zygotes | Zygotes are injected 17-20 hpf and can be in-vitro- or in-vivo-derived. | ||
NaCl | Sigma | S5886 | Final concentration: 107.7mM. Component of SOF-HEPES medium. |
KCl | Sigma | P5405 | Final concentration: 7.16mM. Component of SOF-HEPES medium. |
KH2PO4 | Sigma | P5655 | Final concentration: 1.19mM. Component of SOF-HEPES medium. |
MgCL2 6H2O | Sigma | M2393 | Final concentration: 0.49mM. Component of SOF-HEPES medium. |
Sodium DL-lactate | Sigma | L4263 | Final concentration: 5.3mM. Component of SOF-HEPES medium. |
CaCl2-2H2O | Sigma | C7902 | Final concentration: 1.71mM. Component of SOF-HEPES medium. |
D-(−)-Fructose | Sigma | F3510 | Final concentration: 0.5mM. Component of SOF-HEPES medium. |
HEPES | Sigma | H4034 | Final concentration: 21mM. Component of SOF-HEPES medium. |
MEM-NEAA | Sigma | M7145 | Final concentration: 1X. Component of SOF-HEPES medium. |
BME-EAA | Sigma | B6766 | Final concentration: 1X. Component of SOF-HEPES medium. |
NaHCO3 | Sigma | S5761 | Final concentration: 4mM. Component of SOF-HEPES medium. |
Sodium pyruvate | Sigma | P4562 | Final concentration: 0.33mM. Component of SOF-HEPES medium. |
Glutamax | Gibco | 35050 | Final concentration: 1mM. Component of SOF-HEPES medium. |
BSA | Sigma | A-3311 | Final concentration: 1mg/ml. Component of SOF-HEPES medium. |
Gentamicin | Sigma | G-1397 | Final concentration: 5μg/ml. Component of SOF-HEPES medium. |
Water for embryo transfer | Sigma | W1503 | Component of SOF-HEPES medium. |
SOF-HEPES medium | Made in the lab | pH 7.3-7.4, 280±10 mOs. Filter sterilized through a 22μm filter can be stored in the fridge at 4° C for 1 month. Warm in 37 °C water bath before use. |