This protocol enables the reader to analyze bile salt-induced biofilm formation in enteric pathogens using a multifaceted approach to capture the dynamic nature of bacterial biofilms by assessing adherence, extracellular polymeric substance matrix formation, and dispersion.
Biofilm formation is a dynamic, multistage process that occurs in bacteria under harsh environmental conditions or times of stress. For enteric pathogens, a significant stress response is induced during gastrointestinal transit and upon bile exposure, a normal component of human digestion. To overcome the bactericidal effects of bile, many enteric pathogens form a biofilm hypothesized to permit survival when transiting through the small intestine. Here we present methodologies to define biofilm formation through solid-phase adherence assays as well as extracellular polymeric substance (EPS) matrix detection and visualization. Furthermore, biofilm dispersion assessment is presented to mimic the analysis of events triggering release of bacteria during the infection process. Crystal violet staining is used to detect adherent bacteria in a high-throughput 96-well plate adherence assay. EPS production assessment is determined by two assays, namely microscopy staining of the EPS matrix and semi-quantitative analysis with a fluorescently-conjugated polysaccharide binding lectin. Finally, biofilm dispersion is measured through colony counts and plating. Positive data from multiple assays support the characterization of biofilms and can be utilized to identify bile salt-induced biofilm formation in other bacterial strains.
Biofilm formation is an important bacterial survival strategy induced during harsh environmental conditions. Exposure to bactericidal compounds like antibiotics or changes in nutrient or oxygen availability induces a stressed state in bacteria that can be alleviated through biofilm formation. A biofilm is characterized by bacterial attachment to a surface or other bacteria and is accompanied by the secretion of an EPS matrix primarily composed of polysaccharides1,2,3. Biofilm formation is a dynamic process in which a cascade of events culminates in formation of a mature adherent bacterial community1,2,3. Bacteria produce adhesins to facilitate early attachment while shifting adhesin gene expression profiles to strengthen attachment during biofilm maturation. Simultaneously, EPS production occurs to coat the bacterial community in a matrix to protect the cells from the initial stressor. Bacteria contained within the biofilm are slow growing; and as such, renders most antibiotics ineffective. Furthermore, the slow growth conserves energy until conditions change to favor bacterial growth1,2,3. After the harsh conditions have passed, bacteria disperse the biofilm and resume a planktonic lifestyle1,2,3. Traditionally, biofilms are observed on surfaces and represent a persistent clinical challenge due to infection reservoirs present on catheters and in-dwelling devices1,2,3.
Biofilm formation was recently described for several enteric pathogens; bacteria that infect the small intestine or colon4. For Shigella species, infection occurs in the human colon after a transit through the majority of the gastrointestinal tract. During passage through the small intestine, Shigella is exposed to bile; a lipid-degrading detergent secreted into the intestine to facilitate digestion of lipids while simultaneously killing most bacteria5. Enteric pathogens have a unique ability to resist the bactericidal effects of bile6. Our recent analysis utilized in vivo-like combinations of glucose and bile salts to demonstrate robust biofilm formation in S. flexneri as well as other species of Shigella, pathogenic Escherichia coli, and Salmonella4. Previously, Salmonella enterica serovar Typhi was shown to form a bile-induced biofilm due to unique colonization of the gallbladder during chronic infection7,8,9,10. Additionally, prior research with Vibrio11 and Campylobacter12 demonstrated biofilm formation in response to bile. Therefore, the analyses extended the bile-induced biofilm formation observations to other pathogens and help to establish demonstration of a conserved enteric pathogen response to bile. Unlike chronic biofilms in which bacterial gene transcription is limited and cell senescence can occur1,2,3, we propose that the enteric bile-induced biofilm is more transient in nature. This transient, virulent biofilm is hallmarked by a rapid disassembly (as seen in the dispersion assay) and enhanced virulence gene expression observed in the biofilm population4,6.
As biofilm formation is a multifaceted, dynamic process and the use of bile salts as an initiating factor has only been recently described for most enteric pathogens, the tools and techniques used are unique and creative applications of traditional methods. Thus, presented here are three complimentary strategies to quantify several important characteristics of bile salt-induced biofilm formation, including bacterial adherence, production of the EPS matrix, and dispersion of viable bacteria from the biofilm. These techniques have been utilized primarily for research with Shigella; and therefore, evaluation of other enteric pathogens may require optimization. Nevertheless, positive data from all three assays support identification of biofilms and establish reproducible protocols for bile salt-induced biofilm formation.
Analysis of biofilm formation is challenging due to the dynamic nature of biofilms and the variability between strains, materials, laboratories, and assays. Here, several strategies are presented to determine biofilm formation in enteric pathogens following bile salts exposure with experimental insight provided to promote reproducibility. There are additional considerations to ensure reproducibility. First and foremost, we recommend performing at least three independent experiments each with technical triplicates to conf…
The authors have nothing to disclose.
We thank Rachael B. Chanin and Alejandro Llanos-Chea for technical assistance. We thank Anthony T. Maurelli, Bryan P. Hurley, Alessio Fasano, Brett E. Swierczewski, and Bobby Cherayil for the strains used in this study. This work was supported by the National Institute of Allergy and Infectious Diseases Grant K22AI104755 (C.S.F.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Tryptic Soy Broth | Sigma-Aldrich | 22092-500G | |
Crystal Violet | Sigma | C6158-50 | |
Concanavalin-A FITC | Sigma | C7642-10mg | |
Glucose | Sigma | G7021-1KG | |
Bile Salts | Sigma | B8756-100G | |
LB Agar | Sigma | L7533-1KG | |
14 mL culture tubes, 17 x 100 mm, plastic, sterile | Fisher | 14-959-11B | |
Vectashield hard-set antifade with DAPI | Vector Laboratories | H-1500 | |
Formaldehyde | Sigma-Aldrich | F1635-500 | |
Gluteraldehyde | Sigma-Aldrich | G6257 | |
Flat-bottomed 96-well plates (clear) | TPP | 92696 | |
Flat-bottomed 96-well plates (black) | Greiner Bio-One | 655076 | |
Flat-bottomed 24-well plates (clear) | TPP | 92424 | |
Glass coverslips 12mm, round | Fisher | 08-774-383 | |
96-well plate reader | Spectramax | ||
Flourescent plate reader | Biotek Synergy 2 | ||
Confocal or Fluorescent Microscope | Nikon A1 confocal microscope | ||
37°C Shaking Incubator | New Brunswick Scientific Excella E25 | ||
37°C Plate Incubator | Thermolyne Series 5000 |