Esophageal reconstruction is a challenging procedure, and development of a tissue-engineered esophagus that enables regeneration of esophageal mucosa and muscle and that can be implanted as an artificial graft is necessary. Here, we present our protocol to generate an artificial esophagus, including scaffold manufacturing, bioreactor cultivation, and various surgical techniques.
The use of biocompatible materials for circumferential esophageal reconstruction is a technically challenging task in rats and requires an optimal implant technique with nutritional support. Recently, there have been many attempts at esophageal tissue engineering, but the success rate has been limited due to difficulty in early epithelization in the special environment of peristalsis. Here, we developed an artificial esophagus that can improve the regeneration of the esophageal mucosa and muscle layers through a two-layered tubular scaffold, a mesenchymal stem cell-based bioreactor system, and a bypass feeding technique with modified gastrostomy. The scaffold is made of polyurethane (PU) nanofibers in a cylindrical shape with a three-dimensional (3D) printed polycaprolactone strand wrapped around the outer wall. Prior to transplantation, human-derived mesenchymal stem cells were seeded into the lumen of the scaffold, and bioreactor cultivation was performed to enhance cellular reactivity. We improved the graft survival rate by applying surgical anastomosis and covering the implanted prosthesis with a thyroid gland flap, followed by temporary nonoral gastrostomy feeding. These grafts were able to recapitulate the findings of initial epithelialization and muscle regeneration around the implanted sites, as demonstrated by histological analysis. In addition, increased elastin fibers and neovascularization were observed in the periphery of the graft. Therefore, this model presents a potential new technique for circumferential esophageal reconstruction.
The treatment of esophageal disorders, such as congenital malformations and esophageal carcinomas, can lead to structural segment loss of the esophagus. In most cases, autologous replacement grafts, such as gastric pull-up conduits or colon interpositions, have been performed1,2. However, these esophageal replacements have a variety of surgical complications and reoperation risks3. Thus, the use of tissue-engineered esophagus scaffolds mimicking the native esophagus can be a promising alternative strategy for ultimately regenerating lost tissues4,5,6.
Although a tissue-engineered esophagus potentially offers an alternative to the current treatments of esophageal defects, there are significant barriers for its in vivo application. Postoperative anastomotic leakage and necrosis of the implanted esophageal scaffold inevitably lead to a lethal infection of the surrounding aseptic space, such as the mediastinum7. Therefore, it is extremely important to prevent food or saliva contamination in the wound and nasogastric tube. Gastrostomy or intravenous nutrition should be considered until primary wound healing is completed. To date, esophageal tissue engineering has been performed in large animal models because large animals can be fed only by intravenous hyperalimentation for 2-4 weeks after implantation of the scaffold8. However, such a nonoral feeding model has not been established for early survival after esophageal transplantation in small animals. This is because the animals were extremely active and uncontrollable, so they could not keep the feeding tube in their stomachs for an extended period of time. For this reason, there have been few cases of successful esophageal transplantation in small animals.
In view of the circumstances of esophageal tissue engineering, we designed a two-layer tubular scaffold consisting of electrospun nanofibers (inner layer; Figure 1A) and a 3D-printed strand (outer layer; Figure 1B) including a modified gastrostomy technique. The internal nanofiber is made of PU, a non-degradable polymer, and prevents the leakage of food and saliva. The external 3D printed strands are made of biodegradable polycaprolactone (PCL), which can provide mechanical flexibility and adapt to peristaltic movement. Human adipose-derived mesenchymal stem cells (hAD-MSCs) were seeded on the inner layer of the scaffold to promote re-epithelization. The nanofiber structure can facilitate initial mucosal regeneration by providing a structural extracellular matrix (ECM) environment for cell migration.
We have also increased the survival rate and bioactivity of the inoculated cells through bioreactor cultivation. The implanted scaffold was covered with a thyroid gland flap to enable more stable regeneration of the esophageal mucosa and muscle layer. In this report, we describe protocols for esophageal tissue engineering techniques, including scaffold manufacturing, mesenchymal stem cell-based bioreactor cultivation, a bypass feeding technique with modified gastrostomy, and a modified surgical anastomosis technique for circumferential esophageal reconstruction in a rat model.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC No. 17-0164-S1A0) of the Seoul National University Hospital.
1. Scaffold Manufacturing
NOTE: Two-layered esophageal scaffolds are manufactured by combining electrospinning and 3D printing. The inner membrane of the tubular scaffold was fabricated by electrospinning polyurethane (PU) with rotating stainless steel mandrels as the collectors9.
2. Cell Seeding on the Grafts and Bioreactor Cultivation
NOTE: Human adipose-derived mesenchymal stem cells (hMSCs) purchased from a company were used without modification.
3. Surgical Preparation for Animal Surgery
NOTE: Surgical preparations are applied before both gastrostomy and esophageal transplantation.
4. Gastrostomy Surgery Using a T-tube in Rats
NOTE: A modified gastrostomy was performed in all experimental animals to allow temporary bypass nonoral tube feeding (n = 5).
5. Esophageal Transplantation
NOTE: The esophageal transplantation of the two-layered tubular scaffold is performed 1 week after the gastrostomy (n = 5). Prior to the transplantation, inoculate hMSCs (cell density: 1 x 106 cells/mL in basement membrane matrix) into the inner wall of each scaffold and incubate for 3 days in the bioreactor system. The surgical procedure is as follows.
6. Post-operative procedures
NOTE: Postoperative procedures are performed after both gastrostomy and esophageal transplantation.
7. Histology and immunohistochemistry
NOTE: For histological analysis, all of the esophageal tissue of the euthanized animals is extracted using surgical scissors. Hematoxylin and eosin staining and Masson's trichrome staining were performed using standard histological techniques. Immunohistochemistry was performed according to the following protocol.
Figure 1 shows a schematic diagram of the manufacturing process of the PU-PCL two-layered tubular scaffold. The PU solution was electrospun from an 18 G needle to make a cylindrical internal structure with a thickness of 200 µm. Then, the melted PCL was printed on the outer wall of the PU nanofiber at regular intervals. The surface morphology of the inner and outer walls of the completed tubular scaffold can be seen in the scanning electron microscopy images.
Figure 2 shows the process of inserting a gastrostomy tube in a rat for external nutrient supply (Figure 2A). The T-shaped silicone tube was inserted into the stomach wall and sutured (Figure 2B). The tube was then moved through the subcutaneous tunnel to the back of the neck and connected with a heparin cap (Figure 2C). The tube facilitates the injection of liquid food. It also prohibits the reverse flow of the gastric contents through the tubes.
Figure 3 shows the process of cell inoculation on the scaffold's inner wall, bioreactor cultivation, and esophageal transplantation. The hMSC-embedded basement membrane matrix was applied evenly to the inner wall of the scaffold via injection (Figure 3A). The SEM image shows the morphology of the cell-attached inner surface. Live/dead staining to analyze cell viability on the two-layered tubular scaffold (luminal surface) indicated that most cells were viable, and they spread well on the nanofiber structure in 5 days. The scaffold inoculated with the cells was fixed to the bioreactor, and the shear stress was applied by the pump (Figure 3B). The hMSC-seeded tubular scaffolds, including bioreactor cultivation, were transplanted into rats with full circumferential esophageal defects via microsuture techniques. The graft was covered with a thyroid gland flap for stable fixation and vascular supply of the implanted site (Figure 3C). The weight change of the rats after transplantation was observed until the end of the experiment. Esophageal transplanted rats remained at 340 g until the 9th day, but then rapidly decreased in weight due to various causes (Figure 3D). As a result, most animals died within 15 days.
Figure 4 shows esophageal regeneration after graft implantation. Although most rats developed neoesophageal obstruction caused by hairballs, there was no gross evidence of perforation, anastomosis leakage with fistula, seroma accumulation, abscess formation, or surrounding soft-tissue necrosis in any experimental rat. Re-epithelialization of the transplantation site was confirmed by immunofluorescence staining for keratin 13. The morphology of the collagen layer and the elastin fibers was clearly confirmed at the regeneration site. The presence of abundant elastin and collagen fibers can contribute to better mechanical properties. Regeneration of the esophageal muscle layer was exhibited by desmin immunohistochemistry, and abundant neovascularization was observed at this site.
Figure 1: Schematic illustration of the process used to fabricate 2-layered tubular scaffolds. After fabricating the inner membrane by electrospinning using PU (A), the structural strength of the tubular scaffold was reinforced by adding strands to the outer surface of the membrane using a 3D printing system without solvent (B). The SEM image shows the morphology of the inner and outer layers of the 2-layered tubular scaffold. (Abbreviations: PU = polyurethane). Please click here to view a larger version of this figure.
Figure 2: Gastrostomy. (A) A schematic diagram showing gastrostomy techniques through T-tube insertion in the gastric wall. (B) A puncture hole is made in the middle of the forestomach, and the T-tube tip is inserted into the forestomach. (C) The inlet part of the T-tube is located with the heparin cap in the middle of the occiput. The figure below presents a T-tube gastrostomy apparatus with different components. Please click here to view a larger version of this figure.
Figure 3: Esophageal transplantation. (A) The hMSCs encapsulated in basement membrane matrix were seeded onto the inner layers of the two-layered tubular scaffold. The SEM image shows the morphology of the hMSCs on the inner wall. Viability of the inoculated cells was also confirmed by live-dead staining (green = live cells). The hMSC-seeded scaffolds were immediately incubated in a bioreactor system (B), and then the tissue-engineered esophagi were implanted into the cervical esophagus (C). The implanted site was covered with a thyroid gland flap for stable esophageal reconstruction (arrows). (D) Weight loss studies after esophageal transplantation. Weight loss was determined as absolute change from initial weight of the rats. Please click here to view a larger version of this figure.
Figure 4: Whole histology of the reconstructed esophagus 2 weeks after orthotopic scaffold implantation. Masson's trichrome staining shows the collagen deposition around the implanted sites. Regeneration of the esophageal muscle and mucous layers was confirmed by desmin (green) and keratin 13 (red) immunostaining, respectively. Additionally, neovascularization (arrows) was clearly observed around the regenerated mucosal layer. Please click here to view a larger version of this figure.
Existing animal studies on artificial esophagi are still limited by several critical factors. The ideal artificial esophageal scaffold should be biocompatible and have excellent physical properties. It should be able to regenerate the mucosal epithelium in the early postoperative period to prevent anastomotic leakage. Regeneration of the inner circular and outer longitudinal muscle layers is also important for functional peristalsis12,13.
The mechanical characteristics of the esophagus are essential because the esophagus collapses during respiration and opens during swallowing, with constant exposure to maximal stretching with a recoil phenomenon14. The implanted scaffold must have these mechanical characteristics as well. The viscoelasticity of the implanted esophagus should be adequate for repetitive ramp-relaxation of the peristaltic movement through the esophagus. Scaffolds that are too weak may rupture or leak and cause severe conditions (e.g., mediastinitis) in the recipient. In contrast, a scaffold that is too stiff could bulge into the esophageal lumen and prevent food passage. Electrospun nanofibers have very favorable physical properties for esophageal reconstruction. The ECM's topographical nature provides an environment favorable for the migration and differentiation of epithelial cells in esophageal layers15. It also has a nanopore structure that prevents leakage of saliva and various pathogens16. However, scaffolds made of electrospun nanofibers have limited use due to their soft mechanical properties. To solve this problem, we improved their mechanical strength using 3D printing technology. The 3D printed strand on the outer layer of the nanofiber has a width of 780 µm, and the inner pore structure is quite wide. It provides physical support for esophageal interventions rather than guiding the regeneration of the surrounding tissue.
In this study, circumferential esophageal defects were fully healed in the bioreactor cultured grafts for up to 2 weeks, but all experimental rats died within 15 days after surgery. Most deaths were caused by peritonitis and malnutrition caused by food and saliva leaks proximal to the anastomosis site. All animals freely consumed a liquid diet for up to a week, but as the wound healing progressed, unintended mechanical obstruction occurred in the reconstructed esophagus due to hairball swallowing. This phenomenon has been shown to cause complete digestive disorder within the implanted non-dynamic scaffolds. There are several options to overcome these technical issues. First, the development of a highly elastic esophageal implant that can mimic esophageal peristalsis. Second, animal studies using hairless rats to prevent hair swallowing. Third, the biliary stent can be applied simultaneously with the scaffold to minimize implant collapse and anastomosis damage. In addition, the application of microvascular anastomosis to esophageal scaffold implantation is important to completely prevent the leakage of saliva. The conventional suture technique using the naked eyes is extremely difficult to make watertight in rat models.
A reliable vascular vehicle is essential for nutrients, growth factors, and oxygen supply in the early stages of regeneration. The thyroid gland is vascular tissue located near the esophagus. We used the thyroid gland flap after circumferential esophagectomy because of its easy accessibility in the rat model. In conclusion, we propose various preclinical techniques to overcome the difficulties of esophageal reconstruction in the rat model. This study presents a good alternative to overcome the limitations of conventional small animal esophagus transplantation.
The authors have nothing to disclose.
This research was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI16C0362) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1C1B2011132). The biospecimens and data used in this study were provided by the Biobank of Seoul National University Hospital, a member of Korea Biobank Network.
Metabolic cage | TEUNGDO BIO & PLANT | JD-C-66 | |
Zoletil (50 mg/g dose) | Virbac | 1000000188 | |
0.25% Trypsin-EDTA | Gibco | 25200-056 | |
1 mL Syringe | BD | 309659 | |
2% xylazine hydrochloride (Rumpun) | Byely | Q-0615-035 | |
4% paraformaldehyde | BIOSOLUTION | BP031 | |
4-0 Vicryl | ETHICON | W9443 | |
9-0 Vicryl | ETHICON | W2813 | |
Antibiotic gentamicin (Septopal). | Septopal | 0409-1207-03 | |
Bovine Serum Albumin (BSA) | Sigma | 5470 | |
Citrate Buffer, ph6.0, 10X | Sigma | C9999 | |
DAB PEROXIDASE SUBSTRATE KIT | VECTOR | SK4100 | |
Desmin | Santa Cruz | sc-23879 | |
Elastic stain kit | ScyTeK | ETS-1 | |
Ethanol | Merck | 100983 | |
Ethanol | Merck | 64-17-5 | |
Fetal Bovine Serun (FBS) | Gibco | 16000-044 | |
Glutaraldehyde | Sigma | 354400 | |
Goat anti-Mouse IgG (H+L) Secondary Antibody | ThermoFisher | A-11001 | |
Heparin cap | Hyupsung Medical | HS-T-05 | |
hMSC (STEMPRO) / growth medium (MesenPRO RSTM) |
Invitrogen | R7788-110 | |
Horseradish peroxidase-conjugated kit (Vectastain) | VECTOR | PK7800 | |
Hydrogen peroxide | JUNSEI | 7722-84-1 | |
Keratin13 | Novus | NBP1-97797 | |
LIVE/DEAD Viability Assay Kit | Molecular Probes | L3224 | |
Matrigel | Corning | 354262 | |
N,N-dimethylformamide (DMF) | Sigma | 227056 | |
Nonadherent 24-well tissue culture plates. |
Corning | 3738 | |
OsO4 | Sigma | O5500 | |
Petri dish | Eppendorf | 3072115 | |
Phosphate-buffered saline (PBS) | Gibco | 10010-023 | |
Phosphate-buffered saline (PBS), 10X | BIOSOLUTION | BP007a | |
Polycaprolactone (PCL) polymer | Sigma | 440744 | |
Polyurethane (PU+A2:A24) polymer | Lubrizol | 2363-80AE | |
Power Supply | NanoNC | HV100 | |
ProLong Gold antifade reagent with DAPI | Invitrogen | P36931 | |
Rumpun | Bayer | Q-0615-035 | |
Silicone T-tube | Sewoon Medical | 2206-005 | |
Terramycin Eye Ointment | Pfizer Pharmaceutical Korea | W01890011 | |
Tiletamine/Zolazepam (Zoletil) | Virbac Laboratories | Q-0042-058 | |
Trichrome stain kit | ScyTeK | TRM-1 | |
von Willebrand Factor (vWF) | Santa Cruz | sc 14014 |