This protocol describes the critical steps required to establish and grow corneal endothelial cell cultures from explants of human or sheep tissue. A method for subculturing corneal endothelial cells on membranous biomaterials is also presented.
Corneal endothelial cell cultures have a tendency to undergo epithelial-to-mesenchymal transition (EMT) after loss of cell-to-cell contact. EMT is deleterious for the cells as it reduces their ability to form a mature and functional layer. Here, we present a method for establishing and subculturing human and sheep corneal endothelial cell cultures that minimizes the loss of cell-to-cell contact. Explants of corneal endothelium/Descemet's membrane are taken from donor corneas and placed into tissue culture under conditions that allow the cells to collectively migrate onto the culture surface. Once a culture has been established, the explants are transferred to fresh plates to initiate new cultures. Dispase II is used to gently lift clumps of cells off tissue culture plates for subculturing. Corneal endothelial cell cultures that have been established using this protocol are suitable for transferring to biomaterial membranes to produce tissue-engineered cell layers for transplantation in animal trials. A custom-made device for supporting biomaterial membranes during tissue culture is described and an example of a tissue-engineered graft composed of a layer of corneal endothelial cells and a layer of corneal stromal cells on either side of a collagen type I membrane is presented.
The cornea is a transparent tissue that is situated at the front of the eye. It is composed of three major layers: an epithelial layer on the outer surface, a middle stroma layer, and an inner layer called the corneal endothelium. The corneal endothelium is a monolayer of cells that sits on a basement membrane called Descemet's membrane and it maintains the transparency of the cornea by regulating the amount of fluid that enters the stroma from the underlying aqueous humor. Too much fluid within the stroma causes corneal swelling, opacity and vision loss. The endothelium is therefore vital for maintaining vision.
The corneal endothelium can become dysfunctional for a number of reasons including aging, disease and injury, and the only current treatment is transplant surgery. During this surgery, the endothelium and Descemet's membrane is removed from the patient's cornea and replaced with a graft of endothelium and Descemet's membrane obtained from a donor cornea. Many endothelium grafts also contain a thin layer of stromal tissue to aid handling and attachment to the host cornea1.
Worldwide, the demand for corneal donor tissue for transplant surgeries is greater than the amount that can be supplied by eye banks2. There has therefore been a drive to develop tissue-engineered corneal endothelium transplants that could be used to alleviate this shortfall3. The rationale for this is based on the fact that currently, endothelium from an individual cornea can only be transferred to a single patient, however, if the corneal endothelial cells were first expanded and grown on biomaterial scaffolds in tissue culture, they could be used to treat multiple patients.
Major challenges that need to be addressed before tissue-engineered corneal endothelium transplants become a feasible option for surgeons include: (1) establishing techniques for expanding corneal endothelial cells of high quality and for producing mature and functional corneal endothelial cell layers in vitro, and (2) establishing techniques for growing the cells on biomaterial scaffolds to produce tissue-engineered grafts that are equal to, or better than, the donor cornea-derived grafts that are currently used.
Corneal endothelial cells have a very low proliferative potential in vivo but can be stimulated to divide in vitro4. Nevertheless, they have a strong tendency to undergo in vitro epithelial-to-mesenchymal transition (EMT), which reduces their capacity to form a mature, functional endothelial layer. Known triggers for EMT in corneal endothelial cells include exposure to certain growth factors and loss of cell-to-cell contact5. It is thus almost inevitable that corneal endothelial cell cultures that are enzymatically dissociated during subculture will undergo changes associated with EMT. Here, we present a cell culture method for human or sheep corneal endothelial cells that is designed to minimize disruption of cell-to-cell contacts during isolation, expansion and subculture stages, to reduce the potential for EMT. Furthermore, we demonstrate how tissue-engineered grafts that resemble donor cornea-derived endothelium/Descemet's membrane/stromal tissue grafts can be produced by growing cultured cell layers on both sides of a biomaterial membrane in a custom-made mounting device.
Human corneas with donor consent for research were obtained from the Queensland Eye Bank and used with ethics approval from the Metro South Hospital and Health Service's Human Research Ethics Committee (HREC/07/QPAH/048). Sheep corneas were obtained from euthanized animals at the Herston Medical Research Facility of the University of Queensland under a tissue sharing agreement.
1. Preparation of dissection tools
2. Preparation of culture medium and tissue culture plates
3. Explant dissection and cell culture procedure
4. Continuous production of corneal endothelial cells by serial explant culture
NOTE: Explants can be transferred to fresh tissue culture plates after 10 days to establish additional corneal endothelial cell cultures.
5. Growing corneal endothelial cells on glass coverslips for immunofluorescence analyses
NOTE: Cell cultures that are destined to be analyzed using immunofluorescence should be established on glass coverslips that can be mounted onto glass microscope slides following the staining procedure.
6. Subculture of corneal endothelial cells using Dispase II
NOTE: Large fibroblastic cells can be selectively removed from explant cultures in 6-well plates before subculturing using this procedure. If all cells are to be subcultured, do not perform steps 6.2 to 6.4. The aim of this procedure is to transfer the cells to fresh plates while maintaining their cell-to-cell contacts as much as possible. The cells should be handled gently. Completely confluent wells should be passaged at a ratio of 1:2, while subconfluent wells should be passaged at a ratio of 1:1 or less.
7. Growth of corneal endothelial cell layers on biomaterial membranes
NOTE: The following procedure describes the steps involved in mounting a membranous biomaterial in a custom-made mounting device—called a micro-Boyden chamber—for cell culture. Please refer to our recent publication6 for further information about the device and for purchasing details.
The method for isolating and expanding corneal endothelial cells from human or sheep corneas is summarized in Figure 1 and Figure 2. Most explants that are derived from the corneas of 1 to 2-year-old sheep or human donors of less than 30 years of age will attach to Attachment Factor-coated tissue culture plates within a week, however, it is not unusual to find that up to one third of explants fail to attach within this time. These 'floating' explants can be removed from the cultures. Explants from human donors older than 30 years are less likely to attach to the plate and also less likely to produce cell cultures. Representative images of corneal endothelial cell cultures generated from sheep and human explants are shown in Figure 3 and Figure 4. The cells that emerge from the explants generally remain in contact with each other as they migrate out onto the plate. This kind of migration is known as collective cell migration, and it is a feature of epithelial cells7. By 2 weeks of culture, patches of small, tightly-packed cells will have formed immediately next to many of the explants from both sheep and human corneas8. These patches of cells do not exhibit morphological characteristics of EMT and expand slowly over time. Larger cells with more irregular, fibroblastic shapes can be found outside of these patches. Once the cultures have been established, the explants can be removed using forceps and placed into fresh plates to establish new cultures.
Small, tightly packed cells within the corneal endothelial cell cultures are very resistant to digestion with TrypLE, while the larger fibroblastic cells are more sensitive to it. This difference in TrypLE resistance can be exploited to selectively remove large cells from the cultures before transferring the smaller cells to new plates. Representative images of human corneal endothelial cell cultures throughout the subculturing process using TrypLE and Dispase II are shown in Figure 4.
Immunofluorescence analyses can be conducted on corneal endothelial cell cultures to locate specific proteins in the cells. An example of this is presented in Figure 5. Explants from sheep and human corneas were placed onto Attachment Factor-coated glass coverslips in 24-well plates and cultured for 4 weeks. The explants were removed and then the cultures were analyzed using immunofluorescence for the presence of ZO-1, a tight junction protein, and N-cadherin, an adherents junction protein, according to our published protocol9. The same anti-ZO-1 and anti-N-cadherin antibodies were used for both sheep and human cells, and the results showed that both proteins were detected in the plasma membranes of cells from both species. ZO-1 is normally present as a distinct band at the cell border but becomes weak or absent in cells undergoing EMT. Therefore, the robust ZO-1 expression in these cultures indicated that the cells had not undergone EMT.
Our custom-made micro-Boyden chambers are designed to suspend a biomaterial membrane within the well of a 6-well tissue culture plate (Figure 6). The procedure for mounting a biomaterial membrane into a micro-Boyden chamber is shown in Figure 7. The design of the micro-Boyden chamber allows both sides of the membrane suspended within it to be used as cell culture surfaces simultaneously. To demonstrate this, sheep stromal cells derived from corneal stromal tissue were seeded at a density of 100,000 cells/cm2 onto one side of a collagen type I membrane and then 24 h later the chamber was flipped over and sheep corneal endothelial cells were seeded onto the other side of the membrane at a density of 400,000 cells/cm2. The tissue-engineered cell layers were cultured for 4 weeks, then fixed with 10% neutral buffered formalin and stained using rhodamine phalloidin and Hoechst nuclear dye 33342. They were then examined and photographed using a confocal microscope (Figure 8). A cross-section view of the tissue-engineered cell construct revealed a single layer of corneal endothelial cells on one surface of the collagen membrane and a multi-layered culture of corneal stromal cells on the other surface.
Figure 1: Technique for obtaining explants of endothelium/Descemet's membrane from fresh corneas. (A) The cornea is placed endothelium-side up in a Petri dish under a dissecting microscope. (B) Close up view of the area indicated by a red rectangle in (A). Watchmaker forceps are used to gently peel away Descemet's membrane from the underlying stroma. Please click here to view a larger version of this figure.
Figure 2: Procedure for establishing and expanding cultures of corneal endothelial cells from endothelium/Descemet's membrane explants. Please click here to view a larger version of this figure.
Figure 3: Representative phase contrast images of endothelial cell cultures during initial establishment from explants of sheep corneal endothelium/Descemet's membrane. (A) A sheep corneal endothelium/Descemet's membrane explant after 3 days in culture. Corneal endothelial cells have begun to migrate onto the plate. (B) A sheep explant culture after 1 week. The explant is surrounded by a confluent sheet of cells. (C) A sheep explant culture after 2 weeks. Small cells surround the explant while larger cells are located further away. (D) A sheep explant culture after 6 weeks. A region of small, tightly packed cells is seen next to a region of larger cells. Please click here to view a larger version of this figure.
Figure 4: Isolation of small, tightly packed human corneal endothelial cells for subcultures. (A) A human corneal endothelium/Descemet's membrane explant culture after 7 weeks. Many small, tightly packed cells are present next to the explant. (B) Regions of small, tightly packed cells develop in human explant cultures in a similar manner to that observed in sheep explant cultures. (C) A human explant culture after removal of the explant and after 20 min exposure to TrypLE. Small, tightly packed cells have retained their attachment to the plate while the larger cells have floated away. (D) A human corneal endothelial cell culture after 1 h in Dispase II. Most cells have detached from the plate as free-floating clumps. (E) A human corneal endothelial cell subculture after 1 day. Cells have migrated outwards from cell clumps that were isolated from the original explant culture. (F) A human corneal endothelial cell subculture after 12 days. The cells have formed a confluent monolayer. Please click here to view a larger version of this figure.
Figure 5: Localization of ZO-1 and N-cadherin proteins in the membranes of sheep and human corneal endothelial cells by dual-labelling immunofluorescence. Sheep and human corneal endothelium/Descemet's membrane explant cultures were established on Attachment Factor-coated glass coverslips and analyzed after 4 weeks. Both ZO-1 (green stain) and N-cadherin (red stain) were detected in the membranes of sheep (A and B) and human (D and E) corneal endothelial cells. Analysis of the merged images revealed that the two proteins were highly co-localized within the cultures (C and F). Please click here to view a larger version of this figure.
Figure 6: Diagram of a micro-Boyden chamber shown in cross section. Our custom-made micro-Boyden chamber consists of an upper chamber, a lower chamber and an O-ring. It can be used to suspend any type of membranous material within a tissue culture well. Please click here to view a larger version of this figure.
Figure 7: The procedure for mounting a biomaterial membrane in a micro-Boyden chamber for tissue culture. (A) The equipment required for this procedure includes a polytetrafluoroethylene cutting board, a pair of forceps, a trephine of 18 mm in diameter, a custom-made micro-Boyden chamber and a biomaterial membrane. (B) Use the trephine to punch out a disc from the biomaterial membrane. (C) Place the O-ring into the upper chamber of the mounting device and then lay the biomaterial disc over it. (D) Screw the lower chamber onto the upper chamber of the mounting device. (E) The assembled micro-Boyden chamber is ready to be sterilized with 70% ethanol. (F) Immerse the sterilized micro-Boyden chamber in tissue culture medium in the well of a 6-well tissue culture plate. Please click here to view a larger version of this figure.
Figure 8: Sheep corneal endothelial and stromal cells on opposing sides of a collagen type I membrane. The cells were stained with phalloidin rhodamine to visualize actin (red) and Hoechst to visualize nuclei (blue). The collagen type I membrane was not stained and is therefore not visible in these images that were collected using confocal microscopy. (A) A low magnification, cross section view of the tissue-engineered construct. A thin layer of actin representing a corneal endothelial cell culture is visible on the upper surface of the membrane, and a thicker layer of actin representing a stromal cell culture is present on the lower surface of the membrane. Blue nuclei are not shown in this image. (B) En face view of the corneal endothelial cell layer showing both actin and nuclei staining. (C) En face view of the corneal stromal cell layer showing both actin and nuclei staining. Please click here to view a larger version of this figure.
A significant technical challenge associated with establishing and expanding human corneal endothelial cells is preventing EMT from occurring in the cultures. EMT can be triggered in corneal endothelial cells by loss of cell-to-cell contact, yet most cell culture protocols for these cells involve enzymatic dissociation to single cells during isolation and subculture10. Here we present an alternative cell culture protocol for corneal endothelial cells that minimizes the risk of cells losing contact with each other during the isolation and subculture stages.
Our method for establishing corneal endothelial cell cultures involves placing explants of endothelium/Descemet's membrane from donor corneas into tissue culture plates under conditions that allow the cells to collectively migrate out from the membranes and onto the plates. For this to be successful, the explant must form a tight attachment to the tissue culture plate, and this is best achieved by not disturbing the plate for several days after the cultures have been set up. Another critical factor in the successful establishment of corneal endothelial cell cultures from humans is the age of the donor. Higher success rates tend to be achieved from donors younger than 30 years of age.
A disadvantage of using the explant culture method for establishing corneal endothelial cell cultures is the relatively long period that exists between setting up the cultures and obtaining large numbers of cells. So called 'peel-and-digest' methods involve stripping the endothelium from donor corneas and digesting it with enzymes to release the cells for culture11. These types of methods would produce cultures containing more cells initially than those established from explants.
Our explant culture method for corneal endothelial cells produces cultures containing very small, compact, mature cells of high quality. However, the cultures also contain larger, less ideal cells towards the periphery of the plate. The larger cells can be removed by digestion with TrypLE and discarded if desired, but this reduces the number of cells available for subculture. However, explants that have successfully initiated primary cell cultures are almost always able to initiate further cell cultures, and this ability can be exploited to obtain large numbers of high quality cells.
Our subculture method for corneal endothelial cells involves using Dispase II to gently lift cell clumps away from the tissue culture plate for transfer to fresh plates, and although this method is designed to minimize the possibility of EMT occurring in passaged cells, it should be noted that it does not reduce the risk to zero.
It has been the goal of many groups to develop tissue-engineered corneal endothelial cell layers for transplantation purposes. Many different materials have been trialed as carriers for the cells and a variety of different methods have been used to restrain the material from moving around in the culture plate during cell culture. Most methods involve anchoring the material to the surface of the tissue culture plate somehow, restricting cell growth to the upper surface of the membrane only. While these methods could be used to produce single layers of tissue-engineered corneal endothelium that would be equivalent to endothelium/Descemet's membrane grafts (DMEK grafts), they could not be used to produce tissue-engineered equivalents of the endothelium/Descemet's membrane/stroma grafts (DSEK or DSAEK grafts) that are most commonly used by surgeons currently. We have therefore developed a membrane mounting device called a micro-Boyden chamber that allows cells to be simultaneously grown on both surfaces of a suspended biomaterial membrane, and have used it to produce tissue-engineered grafts consisting of corneal endothelial cells and corneal stromal cells on opposite surfaces of collagen type I membranes. These dual-layered tissue-engineered grafts could potentially be used to replace donor cornea-derived grafts of endothelium and stromal tissue on either side of Descemet's membrane (DSEK or DSAEK grafts).
In summary, the methods presented in this article are designed for those who wish to obtain primary corneal endothelial cells of high quality for use in tissue engineering studies. Gentle culture methods are described that are designed to reduce the risk of the cells undergoing EMT and a method for growing the cells on suspended biomaterial membranes is presented. We hope that these methods may assist others towards their goals of producing tissue-engineered corneal endothelium transplants.
The authors have nothing to disclose.
Thanks to Noémie Gallorini for her assistance during the preparation of Figure 7. This work was supported by a project grant awarded to DH by the National Health and Medical Research Council of Australia (Project Grant 1099922), and by supplementary funding received from the Queensland Eye Institute Foundation.
Attachment factor | Gibco | S006100 | A 1X sterile solution containing gelatin that is used to coat tissue culture surfaces. Store at 4 °C. |
Bovine pituitary extract | Gibco | 13028014 | A single vial contains 25 mg. Freeze in aliquots. |
Calcium chloride | Merck | C5670 | Dissolve in HBSS to make a 1 mM stock solution. Filter sterilise. |
Centrifuge tube, 50 ml | Labtek | 650.550.050 | |
Chondroitin sulphate | LKT Laboratories | C2960 | This is bovine chondroitin sulphate. Dissolve in HBSS to make a 0.08 g/mL stock solution. Filter sterilise and freeze in aliquots. |
Dispase II | Gibco | 17105-041 | Dissolve in DPBS to make a 2 mg/mL stock solution. Filter sterilise and freeze in aliquots. |
Ethanol | Labtek | EA043 | 100% undenatured ethanol should be diluted to 70% in deionised water for sterilising instruments and surfaces. |
Foetal bovine serum | GE Healthcare Australia Pty Ltd | SH30084.03 | This is a HyClone brand of foetal bovine serum. |
Coverglass No. 1, Ø 13 mm | Proscitech | G401-13 | Place sterilised cover slips into 24-well plates for tissue culture. |
HBSS | Gibco | 14025-092 | Hank's balanced salt solution, 1X, containing calcium chloride and magnesium chloride. |
L-ascorbic acid 2-phosphate | Merck | A8960 | Dissolve in HBSS to make a 150 mM stock solution. Filter sterilise. |
Micro-Boyden chamber | CNC Components Pty. Ltd. | Upper ring: QUT-0002-0006, Base ring: QUT-0002-0007 | Both components are made from polytetrafluoroethelyne (PTFE). |
O-ring for micro-Boyden chamber | Ludowici Sealing Solutions | RSB012 | Composed of silicon rubber. |
Opti-MEM 1 (1X) + GlutaMAX-1 | Gibco | 51985-034 | A reduced serum medium containing glutamine. |
DPBS | Gibco | 14190-144 | Dulbecco's phosphate buffered saline, 1X, without calcium chloride and magnesium chloride. |
Pen Strep | Gibco | 15140-122 | A 100X antibiotic solution containing 10,000 Units/mL penicillin and 10,000 µg/mL streptomycin. |
Petri dish | Sarstedt | 82.14473.001 | Sterile Petri dish, 92 X 16 mm, for tissue dissections. |
Tissue culture plate, 24 well | Corning Incorporated | Costar 3524 | A plate containing 24 wells, each with a surface area of 2 cm2. |
Tissue culture plate, 6 well | Corning Incorporated | Costar 3516 | A plate containing 6 wells, each with a surface area of 9 cm2. |
TrypLE Select | Gibco | 12563-011 | A 1X enzyme solution for dissociating cells. |
Versene | Gibco | 15040-066 | A 1X EDTA solution for dissociating cells. |
Watchmaker forceps | Labtek | BWMF4 | Number 4 watchmaker forceps work well for removing strips of endothelium/Descemet's membrane from corneas. |