Внутри живых организмов ферменты выступают в качестве катализаторов многих биохимических реакций, связанных с клеточным метаболизмом. Роль энзимов заключается в уменьшении энергий активации биохимических реакций путем формирования комплексов с его субстратами. Снижение энергий активации благоприятно для повышения темпов биохимических реакций.
Дефицит фермента часто может привести к опасным для жизни заболеваниям. Например, генетическая аномалия, приводющая к дефициту фермента G6PD (глюкоза-6-фосфатдегидрогеназа), отрицательно влияет на метаболический путь, по которого NADPH поставляет клеткам.
Нарушение этого метаболического пути может привести к уменьшению глутатиона в эритроцитах, что может привести к повреждению других энзимов и белков, таких как гемоглобин. Избыточная метаболизация гемоглобина повышает уровень билирубина, что приводит к желтухе, что может стать серьезным. Таким образом, люди, страдающие от дефицита G6PD, должны избегать некоторых продуктов питания и лекарств, содержащих химические вещества, которые могут вызвать повреждение их глутатионно-дефицитных эритроцитов.
Функция и структура фермента
Ферменты группируются по разным классам в зависимости от конкретной функции, которую они выполняют. Например, окислоредуктазы участвуют в окислительно-восстановительных реакциях, в то время как трансферазы катализируют перенос функциональных групп. Формирование связей с гидролизом АТФ требует лигаз, в то время как реакции гидролиза и образование двойных связей катализируются гидролазами и лиазами соответственно. Ферменты Isomerase обычно катализируют реакции изомеризации.
Ферменты обычно обладают активными участками. Это специфические области на молекуле с конформацией, которая предпочитает фермент связывать с конкретным субстратом (молекулой реагент), образуя комплекс фермента-субстрата или реактивный промежуточный.
Две модели — модель с блокировкой и ключом и модель с индуцированной посадкой — пытаются объяснить работу активной площадки (рис. 1). Самая упрощенная гипотеза о блокировке и ключе позволяет сделать вывод, что активная область и молекулярная форма подложки являются взаимодополняющими, объединяя их, как ключ в замке (рис. 1a). С другой стороны, гипотеза индуцированной пригонки предполагает, что молекула фермента является гибкой и изменяет форму для размещения связи с субстратом (рисунок 1b).
Однако и модель блокировки-ключа, и модель индуцированной подгонки учитывают тот факт, что ферменты могут связываться только с определенными субстратами и катализировать только определенную реакцию.
Рисунок 1 (a) в зависимости от модели с замком, форма активного участка фермента идеально подходит для субстрата. (b) в зависимости от модели наведенной посадки активный участок является несколько гибким и может изменить форму для связи с подложкой.
Ингибиторы фермента
Активность фермента также может быть прервана процессом ингибирования фермента. Существует несколько распространенных типов ингибитирования фермента.
Во время конкурентного торможения молекула (натуральная или синтетическая), кроме субстрата, напрямую связывается с активным участком фермента. Структурное и химическое сходство ингибитора с субстратом облегчает его привязку к активному участку. Такие ингибиторы конкуренции, таким образом, конкурируют с субстратами, предотвращая их связывание с фермента. Чаще всего увеличение концентрации субстрата может подавить эффекты конкурентного торможения.
При неконкурентном угнетении молекула (натуральная или синтетическая) связывается с аллостерической (другой) областью фермента, отличной от его активного участка. Связывание ингибитора вызывает конформное изменение активной области фермента, в результате чего снижается способность фермента катализировать реакцию. В отличие от конкурентного торможения, увеличение концентрации субстрата не смягчает тормозящего эффекта неконкурентного торможения.
Часть этого текста адаптирована из Openstax, Химия 2е изд., раздел 12.7: Катализ.
Chemical Kinetics
48.3K Просмотры
Chemical Kinetics
22.5K Просмотры
Chemical Kinetics
28.1K Просмотры
Chemical Kinetics
52.2K Просмотры
Chemical Kinetics
32.5K Просмотры
Chemical Kinetics
32.5K Просмотры
Chemical Kinetics
79.2K Просмотры
Chemical Kinetics
35.8K Просмотры
Chemical Kinetics
23.9K Просмотры
Chemical Kinetics
30.3K Просмотры
Chemical Kinetics
25.5K Просмотры
Chemical Kinetics
78.8K Просмотры