14.13: Рецепторы, сопряженные с G-белком

G-protein Coupled Receptors
JoVE Core
Molecular Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Molecular Biology
G-protein Coupled Receptors
Please note that all translations are automatically generated. Click here for the English version.

5,345 Views

01:21 min
April 07, 2021

Overview

G-protein coupled receptors are ligand binding receptors that indirectly affect changes in the cell. The actual receptor is a single polypeptide that transverses the cell membrane seven times creating intracellular and extracellular loops. The extracellular loops create a ligand specific pocket which binds to neurotransmitters or hormones. The intracellular loops holds onto the G-protein.

The G-protein or guanine nucleotide-binding protein, is a large heterotrimeric complex. Its three subunits are labeled alpha (α), beta (β), and gamma (γ). When the receptor is unbound or resting, the α-subunit binds a guanosine diphosphate molecule or GDP, and all three subunits are attached to the receptor.

When a ligand binds the receptor, the α-subunit releases the GDP and binds a molecule of guanosine triphosphate (GTP). This action releases the α-GTP complex and the β-γ complex from the receptor. The α-GTP can move along the membrane to activate second messenger pathways such as cAMP. However there are different types of α-subunits and some are inhibitory, turning off cAMP.

The β-γ complex may interact with potassium ion channels which release potassium (K+) into the extracellular space resulting in hyperpolarization of the cell membrane. This type of ligand-gated ion channel is called a G-protein coupled inwardly rectifying potassium channel or GIRK.

Ligands do not permanently bind the receptor. When the ligand leaves the receptor, it becomes available for the G-protein units to recouple and reattach. Before this though, nearby enzymes must hydrolyze the GTP attached to the α-subunit back into GDP. Once this is achieved, the β-γ complex reassembles with the GDP-α complex, and the whole G-protein reattaches to its receptor domain.

Common G-protein coupled receptors are: muscarinic acetylcholine receptors found in skeletal muscles, Beta-1 adrenergic receptors in the heart, and vasopressin receptors on smooth muscle cells. In sensory systems, like olfactory receptors and some taste receptors, the binding ligands are environmental molecules. For example, sucrose molecules bind G-protein coupled receptors resulting in the perception of sweet taste.

Alterations in G-protein coupled receptors may play a substantial role in mood disorders, like depression. Serotonin is a ligand for the 5HT1A receptor, a G-protein coupled receptor. It has been suggested that, in depression, interactions between the ligand and the receptor are changed; either the ligand does not bind long enough or the receptor does not fully respond. This results in poor serotonergic signaling which manifests as depression.

Transcript

G-protein coupled receptors, or GPCRs, are another type of integral membrane protein.

Their extracellular part protruding out of the membrane contains a ligand binding site for a variety of compounds. The intracellular portion is coupled to a G-protein made up of three different sub-units, alpha, beta, and gamma.

When a ligand binds, the receptor changes shape causing the guanosine diphosphate, or GDP, bound by the alpha subunit to be released and substituted for a guanosine triphosphate, or GTP, molecule. These two then dissociate from the beta and gamma subunits.

Now, both sets of fragments are free to move around the cytoplasm and interact with other effector proteins that activate a series of intracellular signal cascades that direct and amplify the signal. To terminate the process, GTP is hydrolyzed into GDP and the G-protein subunits reassemble back into an inactive form leaving the GPCR ready for a new signal.

Key Terms and definitions​

Learning Objectives

Questions that this video will help you answer

This video is also useful for

Tags

Рецепторы сопряженные с G-белком также известные как GPCR представляют собой класс рецепторов клеточных мембран которые играют решающую роль в передаче сигнала. Эти рецепторы участвуют в широком спектре физиологических процессов и обнаруживаются практически в каждом типе клеток организма. Структура GPCR состоит из семи трансмембранных доменов которые образуют карман или сайт связывания для определенных лигандов. Когда лиганд связывается с рецептором он вызывает конформационные изменения которые активируют связанный с ним G-белок. G-белки — это гетеротримерные белки которые состоят из трех субъединиц: альфа бета и гамма. При активации рецептором альфа-субъединица обменивает GDP на GTP и диссоциирует от бета-гамма-субъединиц. Как альфа-субъединица так и бета-гамма-субъединицы могут затем взаимодействовать с различными эффекторными белками инициируя нисходящие сигнальные каскады. Активация GPCR и связанных с ними G-белков может привести к различным клеточным реакциям включая изменения активности фермента иона С