Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

11.14: Preparación y Reacciones de Tioles

TABLA DE
CONTENIDOS
JoVE Core
Organic Chemistry

A subscription to JoVE is required to view this content.

Education
Preparación y Reacciones de Tioles
 
TRANSCRIPCIÓN

11.14: Preparación y Reacciones de Tioles

Thiols are prepared using the hydrosulfide anion as a nucleophile in a nucleophilic substitution reaction with alkyl halides. For instance, bromobutane reacts with sodium hydrosulfide to give butanethiol.

Figure1

This reaction fails because the thiol product can undergo a second nucleophilic substitution reaction in the presence of an excess alkyl halide to generate a sulfide as a by-product.

Figure2

This limitation can be overcome by using thiourea as the nucleophile. The reaction first produces an alkyl isothiourea salt as an intermediate, which forms thiol as a final product upon hydrolysis with an aqueous base.

Figure3

Thiols can readily oxidize to disulfides, sulfinic acid, and sulfonic acid. The oxidation of thiols to disulfides can even occur in the presence of atmospheric air. Thus, the high susceptibility of thiols to undergo air oxidation necessitates the storage of thiols in an inert atmosphere. Oxidation of thiols to disulfides can also be accomplished using reagents like molecular bromine or iodine in the presence of a base. Disulfides, however, can be easily reduced back to thiols by treatment with reducing agents such as HCl in the presence of zinc. Notably, oxidation of thiols to disulfides is a redox reaction. The interconversion between thiols and disulfides is ascribed to the bond strength of the S–S bond, which is approximately half the strength of other covalent bonds.

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter