-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Core
Cell Biology
Photosystems
Photosystems
JoVE Core
Cell Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Cell Biology
Photosystems

20.6: Photosystems

6,290 Views
01:32 min
April 30, 2023

Overview

Photosystems are multiprotein complexes that form the functional units of photosynthesis in plants, algae, and cyanobacteria. They are found embedded in the membrane of tiny sac-like structures called thylakoids placed inside the chloroplast.

Functioning of Photosystems

Photosystems contain many pigment molecules, such as chlorophylls and carotenoids, arranged in a particular organization across two domains — the antenna complex and the reaction center. The main aim of the pigment molecules distributed in the antenna complex is to absorb light in the form of photons and funnel them to the special chlorophyll pair of the reaction center.

There are two types of photosystems — photosystem II (PSII) and photosystem I (PSI) that are structurally similar but differ on the basis of the source of the low-energy electron supplier and the acceptor to which they deliver their energized electrons. Both these photosystems work in concert.

The PSII reaction center, also known as P680, absorbs a photon that excites an electron in the chlorophyll. The high-energy electron breaks free and is passed on to the primary electron acceptor, and ultimately to PSI through the electron transport chain. P680's missing electron is replaced by extracting a low-energy electron from water; thus, water is "split" during this stage of photosynthesis, and PSII is re-reduced after every photoact. Splitting one H2O molecule releases two electrons, two hydrogen atoms, and one atom of oxygen. The oxygen molecules are released into the environment while the hydrogen ions play a critical role in establishing a proton gradient across the thylakoid membrane that is essential for the synthesis of ATP in the chloroplast.

As electrons move through the proteins that reside between PSII and PSI, they lose energy and must be re-energized by PSI; hence, another photon is absorbed by the PSI antenna. This energy is relayed to the PSI reaction center called P700. P700 is oxidized and sends a high-energy electron to NADP+ to form NADPH. Thus, PSII captures the energy to create proton gradients to make ATP, and PSI captures the energy to reduce NADP+ into NADPH.

After the energy from the sun is converted into chemical energy in the form of ATP and NADPH molecules, the cell has the fuel needed to build carbohydrate molecules for long-term energy storage. This is achieved in the second phase of photosynthesis, also known as the light-independent or dark phase of photosynthesis, which occurs in the chloroplast stroma.

This text is adapted from Openstax, Biology 2e, Chapter 8, Section 8.2:The Light-dependent Reactions of Photosynthesis.

Transcript

Photosynthetic organisms capture sunlight through the pigment-protein complexes called photosystems, embedded within the chloroplast's thylakoid membrane.

These complexes are categorized into photosystem I or PSI and photosystem II or PSII.

Inside the chloroplast, PSI complexes are predominantly located in the unstacked regions, called the stromal lamellae, while PSII complexes are present within the stacked granal lamellae.

Each photosystem is a collection of about 200 chlorophyll and 50 carotenoid pigment molecules, distributed across two different domains of the photosystem─the core domain called the reaction center and a peripheral domain called the antenna complex.

Although all pigment molecules absorb photons, only a few chlorophyll molecules associated with the reaction center can convert absorbed light energy to chemical energy.

The pigments in the antenna complex only funnel the absorbed energy to the reaction center.

The photosystems also have associated cofactors essential for their functioning.

For instance, PSI has a ferredoxin cofactor, a key junction in the electron transport chain, while PSII contains an oxygen-evolution complex that catalyzes water oxidation, a step crucial for photosynthesis.

Explore More Videos

PhotosystemsPhotosynthesisPlantsAlgaeCyanobacteriaThylakoidsChloroplastPigment MoleculesChlorophyllsCarotenoidsAntenna ComplexReaction CenterPhotosystem II (PSII)Photosystem I (PSI)Low-energy Electron SupplierAcceptorElectron Transport ChainP680Water Splitting

Related Videos

What is Photosynthesis?

01:00

What is Photosynthesis?

Chloroplasts and Photosynthesis

9.8K Views

The Anatomy of Chloroplasts

01:08

The Anatomy of Chloroplasts

Chloroplasts and Photosynthesis

6.6K Views

The Calvin Benson Cycle

01:46

The Calvin Benson Cycle

Chloroplasts and Photosynthesis

5.3K Views

The Photochemical Reaction Center

01:29

The Photochemical Reaction Center

Chloroplasts and Photosynthesis

4.8K Views

The Antenna Complex

01:15

The Antenna Complex

Chloroplasts and Photosynthesis

7.1K Views

Photosystems

01:32

Photosystems

Chloroplasts and Photosynthesis

6.3K Views

The Z-Scheme of Electron Transport in Photosynthesis

01:34

The Z-Scheme of Electron Transport in Photosynthesis

Chloroplasts and Photosynthesis

12.0K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code