A rapid way is described to gain insights into the structure of polysaccharides in an extracellular matrix. The method takes advantage of the specificity of glycosylhydrolases and the sensitivity of mass spectrometry allowing minute amounts of materials to be analyzed. This technique is adaptable to be used directly on tissue itself.
The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling.
An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite.
Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)1 (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself2, and is amenable to high-throughput analyses3. While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights about the substitution-pattern of the native polysaccharide present in the wall.
OLIMP can be used to analyze a wide variety of wall polymers, limited only by the availability of specific enzymes4. For example, for the analysis of polymers present in the plant cell wall enzymes are available to analyse the hemicelluloses xyloglucan using a xyloglucanase5, 11, 12, 13, xylan using an endo-β-(1-4)-xylanase 6,7, or for pectic polysaccharides using a combination of a polygalacturonase and a methylesterase 8. Furthermore, using the same principles of OLIMP glycosylhydrolase and even glycosyltransferase activities can be monitored and determined 9.
The OLIMP method is exemplified on the major hemicellulose present in the cell walls of dicot plants, xyloglucan, using an endoglucanase as the glycosylhydrolase. The method is demonstrated with whole Arabidopsis seedlings as a plant tissue source. Enzyme and extracellular matrix material can be substituted depending on the desired analysis using the same procedure.
1. Cell wall isolation
2. Solubilization of oligosaccharides
3. MALDI-TOF analysis of the released oligosaccharides
4. In situ OLIMP analysis
OLIMP can also be used directly on the tissue omitting any wall preparation steps. As an example etiolated hypocotyls of Arabidopsis as a plant tissue source are used. Again, an endoglucanase is used to determine the structure of the hemicelluloses xyloglucan. Enzyme and tissue material can be substituted depending on the desired analysis using the same procedure.
5. Representative Results
An example of an OLIMP analysis of the hemicelluloses xyloglucan present in Arabidopsis seedlings is shown in Figure 2. Due to the mass differences of the ions and the known well characterized enzyme (endoglucanase) specificity the ions can be assigned to specific oligosaccharide structures (Figure 2A). Obviously, structural isomers cannot be distinguished. The basic assumption for the determination of the relative abundance of the various oligosaccharides (Figure 2B) is that their mass spec response factor is very similar for those oligosaccharides. As shown here, the OLIMP quantification is highly reproducible. However, please note that robustness of the method is highly dependent on the signal to noise ratios of the various oligosaccharide ions. For example contamination with salts or lower amounts of oligosaccharides can decrease that ratio.
The OLIMP analysis on the tissue itself (in situ analysis) enables the study of very small and defined areas and involves very little sample preparation. In the example presented here (Figure 3) no qualitative (same ions) but quantitative differences (variation in the ion intensities) were observed between the shoot and root-tissue of the Arabidopsis seedling. Permutations of the OLIMP-method could thus lead to tissue “imaging”.
Figure 1. Flow chart of the OLIMP procedure using whole Arabidopsis seedlings as a plant source. First, the tissue is macerated and cell wall material is prepared (picture modified from Fujino et al.10). Then oligosaccharides of a particular wall polysaccharide are released using a specific hydrolase. Finally, the relative abundances of the soluble oligosaccharides are determined using MALDI-TOF mass spectrometry.
Figure 2. Relative abundance of xyloglucan oligosaccharides in etiolated seedlings from Arabidopsis as determined by OLIMP. A) Representative xyloglucan oligosaccharide mass spectrum; each ion represents a specific oligosaccharide structure, structural isomers cannot be distinguished. B) Corresponding bar diagram for the determination of the relative oligosaccharide abundance.
Figure 3. In situ OLIMP analysis using etiolated seedlings of Arabidopsis as example. Each enzyme/digestion droplet (colored circles) can be analyzed independently and a corresponding mass spectra can be obtained and analyzed.
Figure 4. OLIMP spectrum of the hemicellulose xylan obtained by digesting Miscanthus leaf material with a xylanase (Megazyme).
The OLIMP method presented here enables a very sensitive and rapid analysis of polymers present in the extracellular matrices. OLIMP combines the enzymatic release of oligomers with subsequent MALDI-TOF analysis. The generation of a MALDI-TOF spectrum takes less than one minute; hence OLIMP is suitable for a wide range of applications including high-throughput studies such as mutant screens. OLIMP is not restricted to plant polysaccharides but can potentially be applied to a wide range of polymers, only limited by the availability of specific hydrolytic enzymes. However, a limitation of OLIMP is that an absolute abundance of the polymer cannot be obtained.
As mentioned before OLIMP can be used to study the structure of a variety of polysaccharides present in the extracellular matrix of a diversity of species. As an example, Figure 4 represents an OLIMP spectrum of the major hemicellulose in grass species, xylan. Here, cell wall material derived from the temperate grass Miscanthus was digested using a xylanase.
The authors have nothing to disclose.
This work was funded by the Energy Biosciences Institute’s grant OO0G01.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
2,5-dihydroxybenzoic acid | Sigma-Aldrich | 37550 | 10mg/mL in water | |
BioRex MSZ 501(D) Resin | BioRad | 142-7425 | ||
Endoglucanase | Megazyme | E-CELTR | ||
Xylanase M6 | Megazyme | E-XYRU6 | ||
3mm metal balls | Retsch | 22.455.0011 | ||
Beat mill | Retsch | Mixer Mill MM400 | ||
MALDI-TOF | Shimadzu BioTech | Axima Performance | ||
MALDI target plate | Kratos Analytical | DE4555TA | ||
SpeedVac | Eppendorf | Vacufuge 5301 | ||
Vacuum manifold | Millipore | MSVMHTS00 | ||
Vacuum pump | Welch | DryFast Ultra 2032 |