Genetically encoded luciferase is a popular non-invasive reporter of gene expression. Use of an automated longitudinal luciferase imaging gas- and temperature-optimized recorder (ALLIGATOR) enables longitudinal recording from bioluminescent cells under a wide range of conditions. Here we show how ALLIGATOR may be used in the context of circadian rhythms research.
Luciferase-based reporters of cellular gene expression are in widespread use for both longitudinal and end-point assays of biological activity. In circadian rhythms research, for example, clock gene fusions with firefly luciferase give rise to robust rhythms in cellular bioluminescence that persist over many days. Technical limitations associated with photomultiplier tubes (PMT) or conventional microscopy-based methods for bioluminescence quantification have typically demanded that cells and tissues be maintained under quite non-physiological conditions during recording, with a trade-off between sensitivity and throughput. Here, we report a refinement of prior methods that allows long-term bioluminescence imaging with high sensitivity and throughput which supports a broad range of culture conditions, including variable gas and humidity control, and that accepts many different tissue culture plates and dishes. This automated longitudinal luciferase imaging gas- and temperature-optimized recorder (ALLIGATOR) also allows the observation of spatial variations in luciferase expression across a cell monolayer or tissue, which cannot readily be observed by traditional methods. We highlight how the ALLIGATOR provides vastly increased flexibility for the detection of luciferase activity when compared with existing methods.
The use of luciferases as reporters of gene expression and protein activity has become a popular technique in molecular and cellular biology research. This is true in the circadian field, where the kinetics of firefly luciferase synthesis and catalytic inactivation are particularly well suited to reporting the longitudinal changes in gene expression that occur over the approximately 24 h circadian cycle. As such, luciferase is employed as a circadian reporter across a wide range of organisms, including fungi, plants, flies, and mammals1,2,3,4.
When quantifying circadian gene expression in vitro, a photomultiplier tube (PMT) is commonly used to record the bioluminescent signal. PMT-based measurements have limited flexibility however, usually being restricted to a pre-determined plate or dish size. It is also not possible to collect any spatial information from samples monitored using a PMT, which can lead to a loss of information when imaging samples that show spatial variation in luciferase expression. Furthermore, as the PMT and associated electronics are prone to malfunction when exposed to the humidified environment of a standard cell culture incubator, longitudinal luciferase recording using PMTs is always performed in non-humidified incubators. In consequence, cell culture dishes must be sealed air-tight to prevent moisture loss through evaporation and the culture media must therefore be buffered with 3-(N-morpholino)propanesulfonic acid (MOPS) or 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), rather than the CO2/bicarbonate buffering system that functions in vivo and is used routinely in mammalian tissue culture.
As a result of these limitations, measurement of bioluminescence by PMTs usually places tight restrictions upon the conditions under which cells are maintained during experiments. To overcome these problems, and also to increase the range of possible experimental conditions, we use a standard CO2/N2 170 L tissue culture incubator that has been adapted by the addition of a water-chilled electron-multiplying charge-coupled device (EMCCD) camera with anti-mist optics and digital control of temperature and gas levels. This has been dubbed an Automated Longitudinal Luciferase Imaging Gas and Temperature-Optimized Recorder, or ALLIGATOR. The ALLIGATOR allows for substantially increased flexibility of bioluminescent imaging, both for high-throughput imaging of standard tissue culture plates (up to 6 x 96- or 384-well plates simultaneously) and also for non-standard tissue culture systems, such as perfused cells grown in microfluidic devices. This instrument also allows for imaging to occur under humidified conditions and with variable control of both CO2 and O2 partial pressure as well as temperature.
The protocol below describes a method for the bioluminescent recording of mammalian cell and tissue culture systems using an ALLIGATOR (henceforth referred to as 'bioluminescence incubator'). It should be noted, however, that the system would be well suited to bioluminescent imaging and also, with some modification, fluorescent imaging, in a number of other biological systems and contexts.
1. Seeding and Temperature Entrainment of Cells
NOTE: This protocol has been rigorously tested using primary and immortalized mouse fibroblasts expressing the PERIOD2::LUCIFERASE (PER2::LUC) fusion protein4. Adjustments may need to be made for experiments using other cell lines.
2. NS21 Preparation
NOTE: NS21 is a serum-free supplement for the maintenance of neuronal and other cell cultures. It is a refinement of a similar supplement known as B27, which is commercially available and can be used as a serum replacement during circadian bioluminescence recordings9. Either supplement can be used interchangeably in the recording media for the experimental protocols described below. It is quite feasible and cost effective to make NS21 in-house, as in Chen et al.10, and as described here.
3. Recording Media Preparation
NOTE: A primary advantage of the bioluminescence incubator over other equipment for recording longitudinal bioluminescence is that, by virtue of being able to humidify the incubator and vary the partial pressures of O2 and CO2, it is possible to use a wider range of media conditions for recording bioluminescence — including conditions which more closely approximate the physiological niche occupied by different cell types in vivo. Below we describe the formulation of recording media adapted from Hastings et al.9, that we have used routinely with cultured fibroblasts and other cell types. The first is for sealed culture conditions (without gas exchange), and the second is for physiologically relevant conditions and should be used under humidified conditions with 5% CO2. Many other variations are both possible and advisable, depending on the exact application and cell type.
NOTE: Luciferin concentration should be determined empirically for each cell type and context. For further information see Feeney et al.11 Serum and NS21 (or B27 if used) concentrations can be varied depending on application. However, we do advise that, unless empirically tested to show otherwise, serum and NS21 (or alternative serum-free supplement) be used, as these promote cell survival and attachment. In cell lines that do not contact inhibit well, it may be necessary to lower the serum concentration in the recording media to prevent confounding effects of proliferation, which is also promoted by serum.
4. Recording
5. Perfused Tissue Culture (Optional)
NOTE: As described in the introduction, the bioluminescence incubator is suitable for imaging of non-standard tissue culture systems. This is exemplified in the development of a system for perfused cell culture.
6. Treatment During Recording
NOTE: Sometimes it is desirable to treat cells midway through a recording, be it with pharmacological or hormonal agents. In such cases, it is imperative that the cells are handled with care to prevent the cellular oscillation from resetting during treatment. For this reason, it is of particular importance that the cells are maintained at a constant temperature, as this is a major entraining cue for cellular circadian rhythms5,6.
7. Analysis
NOTE: The bioluminescence incubator produces data in the form of a series of individual images. We primarily use Fiji12 to manage these images and then export the mean pixel intensity data for each region-of-interest (ROI) for further analysis.
This article outlines a protocol for the bioluminescent imaging of mammalian cells using an ALLIGATOR (bioluminescence incubator). This technique allows for flexibility of physical setup and extracellular conditions when imaging bioluminescent systems. Methods for both simple static tissue culture (Figure 1, Supplementary Video 1) and perfused cell culture (Figure 2, Supplementary Video 2) are described, but many other setups could be imaged using this system. All data were quantified using the methods described in Section 7.
Figure 1A shows an example video of a bioluminescence recording from 6 x 96-well plates containing PER2::LUC fibroblasts4. The outermost wells do not contain cells as these were not required for this experiment. Cells have undergone differential temperature entrainment, whereby they undergo either temperature cycle of 12 h, at 32 °C followed by 12 h 37 °C for 72 h or the converse (12 h, at 37 °C followed by 12 h, at 32 °C for 72 h), before being held at constant 37 °C for recording. 60 min exposures were taken every hour. Two of these conditions are quantified in Figure 1B.
Figure 2A shows a schematic of the setup of a system for perfused tissue culture. This consists of two channel slides connected with tubing. Media is driven across the cells by a syringe pump. The first of these slides acts as a gas permeable bubble trap (buffer slide) and contains no cells, with the second containing the cells from which bioluminescence is recorded. A representative recording video from this system is shown in Figure 2B. 15 min exposures were taken every 15 min. Here, cells are maintained either under standard perfusion conditions or in the presence of casein kinase inhibitor PF670462, which has been previously shown to lengthen circadian period and reduce the amplitude of clock gene expression rhythms in cultured mammalian cells14. The effect on PER2::LUC expression is shown in Figure 2C (top panel) against cells treated with the same concentration of drug under standard static cell culture conditions shown in Figure 2C (bottom panel), with quantification of period shown in Figure 2D. It is clear from this that treatment with PF670462 influences PER2::LUC expression under both sets of conditions. However, whilst cells treated with PF670462 under perfused conditions show period lengthening of approximately 3 h (3 ±0.9 h), cells in static conditions treated with the drug show substantially greater period lengthening to a period of >48 h. This can be fit by a damped cosine, as described in Section 7, (extra-sum-of-squares F test versus a straight line, p <0.0001). Interestingly, the magnitude of period lengthening under perfusion is much closer to that observed in vivo14.
Figure 1: Data example. (A) Example video snapshot of bioluminescence from immortalized PER2::LUC in 6 x 96 well plates in the bioluminescence incubator. Wells to be quantified have been highlighted in yellow in the Supplementary Video 1. (B) Quantification of bioluminescence from A. Two sets of 3 plates of cells were entrained using temperature cycles (12 h, at 32 °C; 12 h, at 37°C) that were anti-phasic to each other to produce opposite phases of PER2 protein expression (n = 6, mean ± SEM). Please click here to view a larger version of this figure.
Figure 2: Perfusion with CK1δ inhibitors. (A) Schematic of perfusion system. (B) Example video snapshot of a bioluminescence recording from PER2::LUC cells under perfusion. A sample area of quantification is highlighted in yellow. (C) Quantification of bioluminescence of PER2::LUC fibroblasts under perfusion and in static conditions with and without 3 µM CK1 inhibitor PF670462 (n = 3, mean ± SEM). Bioluminescence has been normalized to minimum and maximum values. (D) Analysis of period (Two-way ANOVA, Holm-Sidak's multiple comparisons test). Please click here to view a larger version of this figure.
Component | Final Medium Concentration (μM) | Stock (mg/mL) | For 400 mL NS21 |
Bovine Albumin | 37 | – | 50 g |
Catalase | 0.01 | – | 50 mg |
Glutathione | 3.2 | – | 20 mg |
Insulin | 0.6 | 10 | 8 mL |
Superoxide dismutase | 0.077 | – | 50 mg |
Holo-transferrin | 0.062 | – | 100 mg |
T3 (triiodo-L-thyronine) | 0.0026 | 2 | 20 µL |
L-Carnitine | 12 | – | 40 mg |
Ethanolamine | 16 | Liquid (1 g/ml) | 20 µL |
D(+)-Galactose | 83 | – | 300 mg |
Putrescine | 183 | – | 322 mg |
Sodium Selenite | 0.083 | 1 | 280 µL |
Corticosterone | 0.058 | 2 | 0.2 mL |
Linoleic Acid | 3.5 | 100 | 0.2 mL |
Linolenic Acid | 3.5 | 100 | 0.2 mL |
Lipoic Acid | 0.2 | 4.7 | 0.2 mL |
Progesterone | 0.02 | 3.2 | 0.04 mL |
Retinol Acetate | 0.2 | 20 | 0.1 mL |
Retinol, all trans | 0.3 | 10 | 0.2 mL |
D,L-alpha-Tocopherol | 2.3 | 100 | 0. 2 mL |
D,L-alpha-Tocopherol acetate | 2.1 | 100 | 0.2 mL |
Table 1: NS21 Preparation.
Supplementary Video 1: Example video of bioluminescence from well plates. Example video snapshot of bioluminescence from immortalized PER2::LUC in 6 x 96 well plates in the bioluminescence incubator. Wells to be quantified are highlighted in yellow. Please click here to download this file.
Supplementary Video 2: Example video snapshot of a bioluminescence recording from PER2::LUC cells under perfusion. A sample area of quantification is highlighted in yellow. Please click here to download this file.
The protocol described here is for mammalian cell culture, both under perfused and static conditions. However, the ALLIGATOR can easily be adapted to other model systems. Indeed, it has already been shown to provide an excellent platform for simultaneous monitoring of locomotion, sleep, and peripheral gene expression rhythms in Drosophila melanogaster maintained under constant darkness15. It is also noted that, depending on the application, camera types other than that mentioned here may be appropriate. We envisage that with the appropriate filters, a modified version of the current setup could in principal be used for fluorescence quantification.
The only applications for which the ALLIGATOR might not be appropriate are those for which particularly high spatial resolution is required, such as imaging of spatiotemporal organization of PER2::LUC expression in organotypic slices of the mammalian suprachiasmatic nucleus, or other small tissue slices.
The ALLIGATOR enables many experiments to be performed that hitherto have not been readily achievable by conventional recording techniques. Compared with current methods for the measurement of bioluminescence, the ALLIGATOR provides increased flexibility in both the type of cell culture dish or slide that can be used, the external media conditions, sensitivity, and processivity.
This is particularly relevant at a time when there is a move away from standard 2D cell culture models towards 3D organoid and flow culture systems. As such, it is anticipated that the ALLIGATOR will provide an adaptable method by which bioluminescence can be measured over many days and weeks under a broad range of conditions.
The authors have nothing to disclose.
We would like to thank Cairn Research for working with us to develop this system, in particular Mark Henson, Jeremy Graham and Joao Correia. We also thank David Welsh and Akhilesh Reddy for valuable discussion during the design phase, as well as Peter Laskey (formerly of Hamamatsu) for arranging the loan of a demo camera and David Wong for his critical input to the manuscript.
DMEM (1x) + GlutaMAX | Gibco | 31966-021 | |
Hyclone FetalClone III Serum | GE Healthcare | SH30109.03 | |
Neurobasal medium | Thermofisher | 21103049 | basal medium |
Bovine Serum Albumin | Sigma | A4919 | |
Catalase | Sigma | C40 | |
Glutathione | Sigma | G6013 | |
Insulin | Sigma | I1882 | |
Superoxide Dismutase | Sigma | S5395 | |
Holo-transferrin | Calbiochem | 616424 | |
T3 (triiodo-L-thyronine | Sigma | T6397 | |
L-Carnitine | Sigma | C7518 | |
Ethanolamine | Sigma | E9508 | |
D (+)-Galactose | Sigma | G0625 | |
Putrescine | Sigma | P5780 | |
Sodium Selenite | Sigma | S9133 | |
Corticosterone | Sigma | C2505 | |
Linoleic Acid | Sigma | L1012 | |
Linolenic Acid | Sigma | L2376 | |
Lipoic Acid | Sigma | T1395 | |
Progesterone | Sigma | P8783 | |
Retinol Acetate | Sigma | R7882 | |
Retinol, all trans | Sigma | 95144 | |
D,L-alpha-Tocopherol | Sigma | 95240 | |
D,L-alpha-Tocopherol acetate | Sigma | T3001 | |
Sodium Bicarbonate Solution | Sigma | S8761-100ML | |
GlutaMAX (100x) | Gibco | 35050-038 | |
Penicillin-Streptomycin | Sigma | P4333 | |
Galaxy 170R incubator | Eppendorf | CO17301001 | |
Luciferin | Biosynth | L-8220 | |
D -(+)-Glucose solution | Sigma | G8644-100ML | |
DMEM powder | Sigma | D5030 | |
MOPS | Sigma | PHG0007 | |
1 mm I.D. silicone tubing | GE Healthcare | 19-4692-01 | |
Elbow luer connector | Ibidi | 10802 | |
Male luer fittings | Ibidi | 10826 | |
Female luer fittings | Ibidi | 10825 | |
µ-slide luer I 0.6 | Ibidi | 80196 | |
BD plastipak 20ml syringe | Becton Dickinson | 300613 | |
1mm I.D. ETFE tubing | GE Healthcare | 18-1142-38 | |
PF670462 | Sigma | SML0795 | |
B27 Supplement (50x) | ThermoFisher | 17504044 | |
iXon Ultra EMCCD camera | Andor | iXon 888 | |
Fiji | ImageJ | N/A | |
Prism 7.0 | Graphpad Software | N/A | |
Trypan blue | Sigma | T8154 | |
Deltaphase Isothermal Pad | Braintree Scientific | 39DP | |
Heated neutral density filter | Cairn Research | Custom item | |
Osmomat 030 | Gonotech | Discontinued | |
300 mOsmol/kg calibration standard | Gonotech | 30.9.0020 | |
Measuring vessel | Gonotech | 30.9.0010 | |
Focusing cylinder | Cairn Research | Custom item | |
NE-1600 programmable syringe pump | Pump Systems inc. | NE-1600 | |
Andor Solis Software | Andor | N/A |