This protocol describes the recording of local field potentials with multi-shank linear silicon probes. Conversion of the signals using current source density analysis allows the reconstruction of local electrical activity in the mouse hippocampus. With this technique, spatially restricted brain oscillations can be studied in freely moving mice.
The local field potential (LFP) emerges from ion movements across neural membranes. Since the voltage recorded by LFP electrodes reflects the summed electrical field of a large volume of brain tissue, extracting information about local activity is challenging. Studying neuronal microcircuits, however, requires a reliable distinction between truly local events and volume-conducted signals originating in distant brain areas. Current source density (CSD) analysis offers a solution for this problem by providing information about current sinks and sources in the vicinity of the electrodes. In brain areas with laminar cytoarchitecture such as the hippocampus, one-dimensional CSD can be obtained by estimating the second spatial derivative of the LFP. Here, we describe a method to record multilaminar LFPs using linear silicon probes implanted into the dorsal hippocampus. CSD traces are computed along individual shanks of the probe. This protocol thus describes a procedure to resolve spatially restricted neuronal network oscillations in the hippocampus of freely moving mice.
Oscillations in the LFP are critically involved in information processing by neuronal circuits. They cover a wide spectrum of frequencies, ranging from slow waves (~1 Hz) to fast ripple oscillations (~200 Hz)1. Distinct frequency bands are associated with cognitive functions including memory, emotional processing, and navigation2,3,4,5,6,7. Current flow across neuronal membranes constitutes the largest part of the LFP signal8. Cations entering the cell (e.g. via activation of glutamatergic excitatory synapses) represent an active current sink (as charge leaves the extracellular medium). In contrast, net flow of positive charge to the extracellular medium, for instance by activation of GABAergic inhibitory synapses, depicts an active current source at that location. In neuronal dipoles, current sinks are paired with passive sources and vice versa due to compensating currents affecting membrane charge at distant sites.
The electrical field produced by remote neural processes can also result in considerable voltage deflections on a recording electrode and might thus be falsely considered as a local event. This volume conduction poses a serious challenge to the interpretation of LFP signals. CSD analysis provides information about local current sinks and sources underlying LFP signals and therefore comprises a means to reduce the impact of volume conduction8. In laminated structures like the hippocampus, one-dimensional CSD signals can be obtained by the second spatial derivative of the LFP recorded from equidistant electrodes arranged perpendicular to the laminar planes9. The advent of commercially available linear silicon probes has allowed researchers to utilize the CSD method for the study of local oscillation activity in the hippocampus. For example, it has been demonstrated that distinct gamma oscillations emerge in a layer-specific manner in the CA1 area10. Furthermore, CSD analysis has identified independent hot spots of gamma activity in the principal cell layer of the dentate gyrus11. Importantly, these findings were only apparent in local CSD but not in LFP signals. CSD analysis thus provides a powerful tool to gain insight in the microcircuit operations of the hippocampus.
In this protocol, we provide a comprehensive guide to obtain one-dimensional CSD signals with silicon probes. These methods will enable users to investigate localized oscillation events in the hippocampus of behaving mice.
All methods involving living animals have been approved by the Regierungspräsidium Freiburg in accordance with the German Animal Welfare Act.
1. Preparations
2. Implantation Surgery
3. Recovery After Surgery
4. Data Acquisition
5. Histology
6. CSD Analysis
Figure 1 illustrates the insertion tool used for the implantation of silicon probes. Recordings from chronically implanted silicon probes targeting the CA1 area and the granule cell layer of the dentate gyrus are shown in Figure 2. We recorded LFPs from the probe shanks during free movement in the homecage. To minimize the effect of volume conduction, the obtained signals were converted to CSD along each shank of the probe (Figure 2B,D). In the first example shown in Figure 2B, a single sharp-wave ripple event leads to a prominent current sink in stratum radiatum of CA1. In the second example displayed in Figure 2C-E, we recorded from two distinct sites in the granule cell layer of the dentate gyrus (lateral distance 400 µm). The high-gamma band was isolated by applying a 60 – 80 Hz bandpass filter to the CSD signal, revealing local gamma bursts on one of the two recording sites located in the granule cell layer (Figure 2D; red recording site). Note that the local gamma oscillation activity can only be detected after conversion of the recorded signals to CSD (Figure 2D, right). Figure 2E shows separate time periods of the same recording, during which gamma oscillations on both recording sites differ in their phase (Figure 2E, left) or amplitude (Figure 2E, middle). The rightmost example displays an epoch of synchronized gamma activity on both recording sites. These examples illustrate that CSD analysis is capable of isolating local activity not only in the dimension of analysis but also in perpendicular directions. To further illustrate this central concept, we modeled an experiment with a silicon probe consisting of two shanks (I and II) with five recording sites, each in analogy to the results shown in Figure 2. In our model, the probe is implanted in the dentate gyrus with a local gamma oscillation emerging in the granule cell layer next to recording site 4 of shank I (Figure 3). Assuming homogeneous volume conduction throughout the tissue, the local oscillation will be recorded in the LFP at all other recording sites in an amplitude-filtered version (Figure 3C). However, performing CSD analysis along both shanks clearly isolates the locus of gamma generation (Figure 3D). Moreover, the smaller the distance between recording sites on the same shank, the smaller the crosstalk between CSD signals on neighboring shanks (Figure 3E,F).
Figure 1: Image of the insertion tool. The silicon probe is attached to an insect pin glued to the base of a crocodile clamp. The shaft of the holder can be inserted in a stereotaxic micro manipulator for implantation. Please click here to view a larger version of this figure.
Figure 2: Representative results of CSD analysis of in the hippocampus. A: An electrode array consisting of a four-shank silicon probe (shank spacing 400 µm, electrode spacing 100 µm, 8 electrodes/shank) was implanted into the area cornu ammonis 1 (CA1). Shanks A-C traverse stratum oriens (o), stratum pyramidale (p), and stratum radiatum (r). HF: hippocampal fissure. DG: dentate gyrus. B: LFP (black traces) and CSD (color-coded) of the three shanks in CA1 during a 200 ms epoch containing a spontaneous sharp-wave ripple event. Note the prominent current sink in stratum radiatum. LFP scale bar: 2 mV. C: Example of a silicon probe recording from the DG. Shanks A and B penetrate the DG. CA3: cornu ammonis area 3. Electrolytic lesions were performed after recording to label electrode tracks. D: Drawing of the electrode shanks in relation to the hippocampal anatomy. LFP recording from two spatially separated sites in the granule cell layer (red and blue recording site) suggests that gamma oscillations (60 – 80 Hz) are synchronized between both sites (left). However, CSD signals of the same time interval reveal a focal gamma 'hot spot' restricted to the red recording site (right). CSD signals from both recording sites are drawn at the same scale. E: CSD but not LFP signals identify periods of phase (left) and amplitude asynchrony (middle) between both recording sites. The epoch on the right shows a brief epoch of synchronized gamma activity. Traces on the bottom illustrate phase difference (Δ-phase in radians) and amplitude difference index (Ampl. index, defined as the amplitude difference between both recording sites divided by the sum of the amplitudes at each time point with a range from -1 to 1) for LFP (grey) and CSD (black) traces. All three examples are 30 ms long and occurred within 400 ms. Panels C and D are adapted from Strüber et al. 201711 under Creative Commons (https://creativecommons.org/Licenses/by/4.0/). CSD signals from both recording sites are drawn at the same scale in each individual panel. Please click here to view a larger version of this figure.
Figure 3: Model experiment with simulated focal 40 Hz oscillation in the dentate gyrus granule cell layer. A: A model silicon probe with two shanks at a distance of Dshank = 400 µm and five recording sites located at distances of Delectrode = 100 µm is placed in the dentate gyrus. B: Next to recording site 4 of shank I, a focal 40 Hz oscillation is simulated as a sinusoidal waveform plus Gaussian white noise. At all other sites, only noise is induced. Parameters: gamma amplitude: 1 mV; standard deviation of noise: 0.05 mV; temporal resolution: 10 kHz. C: We modeled the amplitude-filtering effect of volume conduction through the extracellular space in a simplified way as a negative exponential decay of gamma amplitudes with a tissue space constant of 500 µm. The exact parameters properly describing the lateral spread of LFP signals are highly controversial14. However, our estimate fits well to data from a neocortical gamma oscillation coherence study15. In the resulting LFP, the originally focal oscillation encompasses several recording sites. D: After performing the CSD analysis along the individual shafts using the given CSD equation, the oscillation is only visible at the original location. E: Power spectral density analysis of LFP (left, red) and CSD traces (right, blue) of recording sites 4 on shank I (dotted line) and II (continuous line). Note that CSD analysis correctly isolates the local 40 Hz oscillation on shank I while the LFP signal contains substantial volume-conducted oscillation activity on shank II. PSD analysis was performed using MATLAB's pwelch function. F: Increasing the distance between recordings sites on individual shanks to 400 µm results in a reduced ability of CSD analysis to isolate focal activity. Simulation and analysis was performed using MATLAB 7.10. Please click here to view a larger version of this figure.
Increasing evidences indicate that brain oscillations in hippocampal neuronal circuits occur in discrete spatial domains10,11,16. CSD analysis drastically reduces the influence of volume conduction, a crucial prerequisite for the study of local oscillation events. With this video, we provide a guide to implanting silicon probes into the mouse hippocampus for the analysis of CSD data. We show representative examples of CSD signals of sharp-wave ripples in CA1 and of localized gamma oscillations in the dentate gyrus. However, this protocol can also be used to study other hippocampal oscillatory activity patterns, such as theta or respiration-related network oscillations17.
Success of the implantation depends crucially on the proper alignment of the animal's head in the stereotaxic frame. We use an injection needle clamped into a stereotaxic holder to measure the deviation of the head in the anterioposterior and mediolateral directions. We sequentially move the needle to touch bregma and lambda and compensate any offset between the heights of both points by tilting the stereotaxic frame. Similarly, measuring the height at 1 mm left and right of bregma will indicate any mediolateral offset, which can be adjusted by tilting the frame left or right. Offsets <50 µm are recommended for best implantation results.
Choice of probe design is another critical aspect. Our simulations indicate that the capability to isolate local events declines with increasing electrode spacing. We have successfully isolated localized gamma oscillation events using silicon probes with 25 and 100 µm electrode spacing and 250 and 400 µm shank spacing11. These metrics thus provide a good starting point for probe design.
Given the high costs of silicon probes, re-usability of the recording probes is currently a limiting factor. The methods described here allow in principal for probe recovery. However, we only successfully recovered the probe after recording in one instance, indicating that the success rate of that procedure is very low. Future improvement of the protocol might include the use of micro-drives designed to facilitate probe recovery18.
The authors have nothing to disclose.
We are grateful to Karin Winterhalter and Kerstin Semmler for technical assistance. This work was supported by the cluster of excellence BrainLinks – BrainTools (EXC 1086) of the German Research Foundation.
Crocodile clamp with stand | Reichelt Elektronik | HALTER ZD-10D | |
Silicon probe | Cambridge Neurotech | P-series 32 | |
Stereoscope | Olympus | SZ51 | |
Varnish-insulated copper wire | Bürklin Elektronik | 89 F 232 | |
Ground screws | Screws & More GmbH (screwsandmore.de) | DIN 84 A2 M1x2 | |
Flux | Stannol | 114018 | |
Ceramic-tipped forceps | Fine Science Tools | 11210-60 | |
Paraffine Wax | Sigma-Aldrich | 327204 | |
Cauterizer | Fine Science Tools | 18010-00 | |
Soldering iron | Kurtz Ersa | OIC1300 | |
Multimeter | Uni-T | UT61C | |
Ethanol | Carl Roth | 9065.1 | |
Pasteur pipettes | Carl Roth | EA65.1 | |
Heat sterilizer | Fine Science Tools | 18000-45 | |
Stereotaxic frame | David Kopf | Model 1900 | |
Stereotaxic electrode holder | David Kopf | Model 1900 | |
Isoflurane | Abbvie | B506 | |
Oxygen concentrator | Respironix | 1020007 | |
Buprenorphine | Indivior UK Limited | ||
Electrical shaver | Tondeo | Eco-XS | |
Heating pad | Thermolux | 463265/-67 | |
Surgical clamps | Fine Science Tools | 18050-28 | |
Hydrogen peroxide | Sigma-Aldrich | H1009 | |
Sterile cotton wipes | Carl Roth | EH12.1 | |
Drill | Proxxon | Micromot 230/E | |
21G injection needle | B. Braun | 4657527 | |
Phosphate buffer/phosphate buffered saline | |||
Stereotaxic atlas | Elsevier | 9.78012E+12 | |
Surgical scissors | Fine Science Tools | 14094-11 | |
Surgical forceps | Fine Science Tools | 11272-40 | |
27G injection needles | B. Braun | 4657705 | |
Vaseline | |||
Dental cement | Sun Medical | SuperBond T&M | |
Carprofen | Zoetis | Rimadyl 50mg/ml | |
Recording amplifier | Intan Technologies | C3323 | |
USB acquisition board | Intan Technologies | C3004 | |
Recording cables | Intan Technologies | C3216 | |
Electrical commutator | Doric lenses | HRJ-OE_FC_12_HARW | |
Acquisition software | OpenEphys (www.open-ephys.org) | GUI | allows platform-independent data acquisition |
Computer for data acquisition | |||
Analysis environment | Python (www.python.org) | allows platform-independent data analysis | |
Urethane | Sigma-Aldrich | ||
Vibratome | Leica | VT1000 | |
Microscope slides | Carl Roth | H868.1 | |
Cover slips | Carl Roth | H878.2 | |
Embedding medium | Sigma-Aldrich | 81381-50G | |
Distilled water | Millipore | Milli Q | Table-top machine for the production of distilled water |
Tergazyme | Alconox | Tergazyme |