Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove


Use of the Pyrimidine Analog, 5-Iodo-2′-Deoxyuridine (IdU) with Cell Cycle Markers to establish Cell Cycle Phases in a Mass Cytometry Platform

Raymond D Devine1, Gregory K Behbehani1


The regulation of cell cycle phase is an important aspect of cellular proliferation and homeostasis. Disruption of the regulatory mechanisms governing the cell cycle is a feature of a number of diseases, including cancer. Study of the cell cycle necessitates the ability to define the number of cells in each portion of cell cycle progression as well as to clearly delineate between each cell cycle phase. The advent of mass cytometry (MCM) provides tremendous potential for high throughput single cell analysis through direct measurements of elemental isotopes, and the development of a method to measure the cell cycle state by MCM further extends the utility of MCM. Here we describe a method that directly measures 5-iodo-2′-deoxyuridine (IdU), similar to 5-bromo-2´-deoxyuridine (BrdU), in an MCM system. Use of this IdU-based MCM provides several advantages. First, IdU is rapidly incorporated into DNA during its synthesis, allowing reliable measurement of cells in the S-phase with incubations as short as 10-15 minutes. Second, IdU is measured without the need for secondary antibodies or the need for DNA degradation. Third, IdU staining can be easily combined with measurement of cyclin B1, phosphorylated retinoblastoma protein (pRb), and phosphorylated histone H3 (pHH3), which collectively provides clear delineation of the five cell cycle phases. Combination of these cell cycle markers with the high number of parameters possible with MCM allow combination with numerous other metrics.

Video Coming Soon

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter