Questo protocollo descrive i passaggi critici necessari per stabilire e coltivare colture di cellule endoteliali corneali da espianti di tessuto umano o o novino. Viene inoltre presentato un metodo per la subcultura delle cellule endoteliali corneali su biomateriali membranosi.
Le colture di cellule endoteliali corneali tendono a subire la transizione epiteliale-mesenchica (EMT) dopo la perdita del contatto tra cellule. EMT è deleterio per le cellule in quanto riduce la loro capacità di formare uno strato maturo e funzionale. Qui, presentiamo un metodo per stabilire e sottraire le colture endoteliali umane e ovine che riduce al minimo la perdita di contatto tra cellule. Gli espianti della membrana dell’endotelio/Descemet vengono prelevati dalle cornee dei donatori e messi in coltura dei tessuti in condizioni che consentono alle cellule di migrare collettivamente sulla superficie di coltura. Una volta che una cultura è stata stabilita, gli espianti vengono trasferiti in piastre fresche per avviare nuove culture. Dispase II viene utilizzato per sollevare delicatamente ciuffi di cellule dalle piastre di coltura dei tessuti per una subcultura. Le colture di cellule endoteliali eteliali che sono state stabilite utilizzando questo protocollo sono adatte per il trasferimento a membrane biomateriali per produrre strati cellulari tessuti-ingegnerizzati per il trapianto in sperimentazioni animali. Viene descritto un dispositivo su misura per sostenere le membrane biomateriali durante la coltura dei tessuti e viene presentato un esempio di innesto di tipo tessuto composto da uno strato di cellule endoteliali corneali e da uno strato di cellule stromali corneali su entrambi i lati di una membrana di collagene di tipo I.
La cornea è un tessuto trasparente che si trova nella parte anteriore dell’occhio. È composto da tre strati principali: uno strato epiteliale sulla superficie esterna, uno strato di stroma medio e uno strato interno chiamato endotelio corneale. L’endotelio cornealeè è un monostrato di cellule che si trova su una membrana seminterrato chiamata membrana di Descemet e mantiene la trasparenza della cornea regolando la quantità di liquido che entra nello stroma dall’umorismo acquoso sottostante. Troppo fluido all’interno dello stroma provoca gonfiore corneale, opacità e perdita della vista. L’endotelio è quindi vitale per mantenere la visione.
L’endotelio corneo può diventare disfunzionale per una serie di motivi tra cui l’invecchiamento, malattia e lesioni, e l’unico trattamento corrente è la chirurgia del trapianto. Durante questo intervento, l’endotelio e la membrana di Descemet vengono rimossi dalla cornea del paziente e sostituiti con un innesto di endotelio e membrana di Descemet ottenuta da un donatore cornea. Molti innesti di endotelio contengono anche un sottile strato di tessuto stromatale per facilitare la manipolazione e l’attaccamento alla corneaospite 1.
In tutto il mondo, la domanda di tessuto del donatore di cornea per interventi chirurgici di trapianto è superiore alla quantità che può essere fornita dalle banche degli occhi2. È stato quindi dimostrato di sviluppare trapianti di endotelio corneo ingegnerizzati che potrebbero essere utilizzati per alleviare questa carenza3. La motivazione di questo si basa sul fatto che attualmente, l’endotelio da un singolo cornea può essere trasferito solo a un singolo paziente, tuttavia, se le cellule endoteliali corneali sono state prima espanse e coltivate su impalcature biomateriali nella coltura del tessuto, potrebbero essere utilizzate per trattare più pazienti.
Le principali sfide che devono essere affrontate prima che i trapianti di endotelio corneo ingegnerizzati siano un’opzione fattibile per i chirurghi includono: (1) stabilire tecniche per espandere le cellule endoteliali corneali di alta qualità e per produrre strati di cellule endoteliali corneali funzionali in vitro e (2) che stabiliscono tecniche per la crescita delle cellule su scaffold biomateriali per produrre innesti di tessuto che sono uguali o migliori dei innesti derivati dalla cornea del donatore attualmente utilizzati.
Le cellule endoteliali corneali hanno un potenziale proliferativo molto basso in vivo, ma possono essere stimolate a dividersi in vitro4. Tuttavia, essi hanno una forte tendenza a subire una transizione epiteliale-mesenchica in vitro (EMT), che riduce la loro capacità di formare uno strato endoteliale maturo e funzionale. I fattori scatenanti noti per EMT nelle cellule endoteliali corneali includono l’esposizione a determinati fattori di crescita e la perdita del contatto da cellula a cellula5. È quindi quasi inevitabile che le colture di cellule endoteliali corneali che sono enzimaticamente dissociate durante la sottocultura subiranno cambiamenti associati all’EMT. Qui, presentiamo un metodo di coltura cellulare per le cellule endoteliali corneali umane o ovine che è progettato per ridurre al minimo l’interruzione dei contatti cellulare-cellulare durante le fasi di isolamento, espansione e sottocultura, per ridurre il potenziale di EMT. Inoltre, dimostriamo come gli innesti di tessuto- ingegnerici che assomigliano a innesti di membrana/tessuto strome del composto da membrana/Descemet derivati dal donatore possono essere prodotti colti producendo strati cellulari coltivati su entrambi i lati di una membrana biomateriale in un dispositivo di montaggio su misura.
Una sfida tecnica significativa associata alla creazione e all’espansione delle cellule endoteliali corneali umane impedisce che si verifichino EMT nelle colture. EMT può essere attivato nelle cellule endoteliali corneali dalla perdita di contatto cellulare-cellulare, ma la maggior parte dei protocolli di coltura cellulare per queste cellule comporta la dissociazione enzimatica a singole cellule durante l’isolamento e la sottocultura10. Qui presentiamo un protocollo alternativo di coltura cellula…
The authors have nothing to disclose.
Grazie a Noémie Gallorini per la sua assistenza durante la preparazione della Figura 7. Questo lavoro è stato sostenuto da una sovvenzione di progetto assegnata al DH dal National Health and Medical Research Council of Australia (Project Grant 1099922), e da finanziamenti supplementari ricevuti dalla Queensland Eye Institute Foundation.
Attachment factor | Gibco | S006100 | A 1X sterile solution containing gelatin that is used to coat tissue culture surfaces. Store at 4 °C. |
Bovine pituitary extract | Gibco | 13028014 | A single vial contains 25 mg. Freeze in aliquots. |
Calcium chloride | Merck | C5670 | Dissolve in HBSS to make a 1 mM stock solution. Filter sterilise. |
Centrifuge tube, 50 ml | Labtek | 650.550.050 | |
Chondroitin sulphate | LKT Laboratories | C2960 | This is bovine chondroitin sulphate. Dissolve in HBSS to make a 0.08 g/mL stock solution. Filter sterilise and freeze in aliquots. |
Dispase II | Gibco | 17105-041 | Dissolve in DPBS to make a 2 mg/mL stock solution. Filter sterilise and freeze in aliquots. |
Ethanol | Labtek | EA043 | 100% undenatured ethanol should be diluted to 70% in deionised water for sterilising instruments and surfaces. |
Foetal bovine serum | GE Healthcare Australia Pty Ltd | SH30084.03 | This is a HyClone brand of foetal bovine serum. |
Coverglass No. 1, Ø 13 mm | Proscitech | G401-13 | Place sterilised cover slips into 24-well plates for tissue culture. |
HBSS | Gibco | 14025-092 | Hank's balanced salt solution, 1X, containing calcium chloride and magnesium chloride. |
L-ascorbic acid 2-phosphate | Merck | A8960 | Dissolve in HBSS to make a 150 mM stock solution. Filter sterilise. |
Micro-Boyden chamber | CNC Components Pty. Ltd. | Upper ring: QUT-0002-0006, Base ring: QUT-0002-0007 | Both components are made from polytetrafluoroethelyne (PTFE). |
O-ring for micro-Boyden chamber | Ludowici Sealing Solutions | RSB012 | Composed of silicon rubber. |
Opti-MEM 1 (1X) + GlutaMAX-1 | Gibco | 51985-034 | A reduced serum medium containing glutamine. |
DPBS | Gibco | 14190-144 | Dulbecco's phosphate buffered saline, 1X, without calcium chloride and magnesium chloride. |
Pen Strep | Gibco | 15140-122 | A 100X antibiotic solution containing 10,000 Units/mL penicillin and 10,000 µg/mL streptomycin. |
Petri dish | Sarstedt | 82.14473.001 | Sterile Petri dish, 92 X 16 mm, for tissue dissections. |
Tissue culture plate, 24 well | Corning Incorporated | Costar 3524 | A plate containing 24 wells, each with a surface area of 2 cm2. |
Tissue culture plate, 6 well | Corning Incorporated | Costar 3516 | A plate containing 6 wells, each with a surface area of 9 cm2. |
TrypLE Select | Gibco | 12563-011 | A 1X enzyme solution for dissociating cells. |
Versene | Gibco | 15040-066 | A 1X EDTA solution for dissociating cells. |
Watchmaker forceps | Labtek | BWMF4 | Number 4 watchmaker forceps work well for removing strips of endothelium/Descemet's membrane from corneas. |