Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

マウスにおける神経免疫ダイナミクスの反復インビボイメージングを行う正確な脳マッピング

Published: August 7, 2020 doi: 10.3791/61454

Summary

このプロトコルは、神経-神経膠血管構造の縦画像化、相互作用、および健康および疾患条件の両方における機能に使用できる慢性頭蓋窓移植技術を記述する。これは、多くの場合、好ましいが、いくつかの重大な制限を有する経頭蓋イメージングアプローチに対する補完的な代替手段として機能する。

Abstract

中枢神経系(CNS)は、その適切な機能を促進する神経細胞、グリア、ストロマ、および血管細胞の複雑な相互作用によって調節される。これらの細胞を単離で研究するが、一緒にvitroまたは一緒にex vivoは有用な生理学的情報を提供する;神経細胞生理学の顕著な特徴は、そのような文脈で見逃される。そのため、生体内での神経細胞のネイティブでの研究が必要です。ここで詳述するプロトコルは、数時間から数ヶ月の間に長期間にわたって特定の細胞を視覚化し、研究するためのツールとして、げっ歯類皮質の神経細胞の反復的なin vivo 2光子イメージングについて説明しています。我々は、関心のある脳領域の細かい地図として粗い地図または蛍光標識デンドライトとして、ひどく安定した脳血管系の使用を詳細に説明する。これらのマップを視覚的な鍵として使用して、ニューラル細胞を正確に再配置して、その後の反復的なin vivoイメージングを行う方法を示す。このプロトコルは、蛍光標識ミクログリア、ニューロン、NG2+細胞のインビボイメージングの例+を用いて、この技術が長期間にわたって同じ脳の位置で細胞ダイナミクスを繰り返し可視化し、正常な生理学または病理学的侮辱に従ってこれらの細胞の構造的および機能的応答を理解するのにさらに役立つ能力を示す。必要に応じて、このアプローチは、例えばカルシウムイメージングと神経細胞の機能的イメージングに結合することができる。このアプローチは、特に、対象細胞にラベルを付ける遺伝的マウスモデルまたは特異的な色素が利用できる場合に、インビボでCNSの異なる細胞タイプ間の物理的相互作用を可視化する強力な技術です。

Introduction

中枢神経系(CNS)は、ニューロン、グリアおよび血管関連細胞を含む様々な常駐細胞タイプ間の相互作用の複雑な相互作用によって支配される。従来、神経細胞は,単離、共培養1、2、3、4、5(in2vitro)または切除された脳組織(ex,3,4,5 vivo)6、7、8、9、10の文脈で研究された。16,7,89,10しかし、インビボでのインビボのインタクトな脳のネイティブ環境における神経細胞の挙動および相互作用をさらに理解する必要がある。このプロトコルでは、インビボの対象領域をマッピングし、今後のイメージングセッションでそれらの領域を正確に再画像化し、さまざまなCNS細胞タイプ間の複雑な相互作用を長期間にわたって追跡する方法を説明する。

in vivoイメージングアプローチの開発は、神経機能,,11、12、13、14、15の適切な理解のために大きな利益を提供11,12,13してきました14具体的には、これらのアプローチは、従来のin vitroおよびex vivoアプローチよりもいくつかの利点を提供します。まず、生体内イメージングシステムは、神経ネットワーク生理学の完全な理解を提供するために、細胞相互作用の完全なレパートリーを有する血管系などの生理学的に関連する細胞および組織成分を有する。第二に、最近の知見は、そのネイティブ環境から除去されると、特定の神経細胞(ミクログリアなど)が同一性の重要な特徴を失い、したがって、生体内設定で保存することができる生理学16、17を失うことを示唆している。16,第3に、in vivoイメージングシステムは、CNS細胞相互作用を研究するために数週間から数ヶ月の安定した縦方向の調査を行う機会を提供する。最後に、末梢免疫系18、19および19CNS生理学におけるマイクロバイオーム20、21からの寄与に関する証拠が増えているのを考えると、生体内システムはCNS細胞に対するそのような寄与および影響を尋問するプラットフォームを提供する。20,したがって、神経免疫生理学を研究するために生体内で縦方向のイメージングを採用するアプローチと、健康、負傷、および疾患状態における相互作用は、従来のアプローチに大きな補完的な追加です。

本プロトコルでは、ミクログリア、ニューロン、NG2+細胞を含む脳内の異なる細胞型を画像化+する信頼できるアプローチを例に挙げる。生体内の神経細胞を視覚化するための2つのアプローチが開発されました:間引かれた頭蓋骨のアプローチと頭蓋窓アプローチを持つ開いた頭蓋骨。薄くなった頭蓋骨のアプローチは使用中であり、グリア細胞活性化などの開いた頭蓋骨アプローチの欠点のいくつかを克服するために好まれるが、より高い生理学的脊柱ダイナミクスおよび抗炎症剤22、23、24、25の使用はまた23,24いくつかの重要な欠点を示す。,25第一に、薄くする手順は、多くの研究者が特に再薄化が必要な場合に完璧にすることが困難であると感じる非常に繊細な手順です。これは、実験者が頭蓋骨を〜20μmの深さまで薄くしていることを確認することがしばしば困難であるためです。第二に、マウス間の適切な比較のためには、間伐が同一である必要があり、イメージングセッションまたはマウス間の様々な間の成功は、神経構造の視覚化を複雑にする可能性があります。第三に、縦断イメージングに用いられる場合、頭蓋骨を薄くした動物は、頭蓋骨の再薄化が採用される場合にのみ限られた数のセッションに使用することができる。第4に、骨組織の一部はまだ残っているので、イメージングの深さの明瞭さは、より表面的であるが、より深い領域ではそれほど表面的ではないの大きな視覚化を可能にする薄膜スカルアプローチから損なわれる可能性がある。これに照らして、海馬のようなより深い脳構造は、薄い頭蓋骨のアプローチでうまく画像化することはできません。これらの考慮事項は、これらの懸念を克服できる代替的かつ補完的なアプローチの必要性を高めます。

薄い頭蓋骨のアプローチに代えて、開いた頭蓋骨の窓の注入アプローチは、頭蓋骨が光学的に透明なガラスカバースリップに置き換えられる手順を使用する。これにより、ほぼ無制限の数のイメージングセッションが可能になります。さらに、頭蓋骨をガラスカバースリップに置き換えることを考えると、この方法は、数時間から数ヶ月の広範な時間にわたって蛍光タグ付き脳細胞の明確な表示ウィンドウを可能にし、したがって、生理学、老化および病理学に関連する細胞活性および相互作用を研究するために使用することができる。

全体として、我々は、関心のある脳領域の生体内イメージングを可能にする立体的頭蓋切開術を通じて慢性頭蓋窓を移植するために従うことができるステップを詳述する。また、ひどく安定した脳血管系または蛍光標識デンドライトを使用して、関心のある脳領域の粗い地図または細かい地図を生成する方法についても説明します。このアプローチは、複数のセッションで繰り返しイメージングするために使用できます。したがって、この技術の重要性は、異なる細胞型の配置、形態、相互作用を含む脳要素における長期的な変化またはスタシスを画像化する能力にある。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

すべてのステップは、バージニア大学の制度的動物管理および使用委員会によって設定され、承認されたガイドラインに従っています。

1. 頭蓋窓の移植のためのマウスの準備

注:蛍光タグを持つ様々なトランスジェニックマウスラインは、イメージングに適しています。

  1. CX3CR1GFP/+マウス26を用いて、生体内でミクログリアを可視化する。典型的には、17〜25gの体重を持つ4〜10週齢の若年の成人に若年のマウスが使用される。
    注:このアプローチは、離乳前マウスの場合にもありがちですが、母親が手術後に十分な世話をしないと、母親と一緒にケージにマウスを戻す必要があります。したがって、マウスの使用は、後の引き出しが推奨されます。
  2. 麻酔室でイオブルラン(1分間の誘導のための酸素中の5%の流れ)を使用してマウスを麻酔します。マウスがつま先や尾のピンチに対する動きやぴくぴくする応答を表示していないことを確認します。チャンバーからマウスを取り出し、野外で徹底的にヘアトリマーを使用して、目の高さについてから首の領域の上部に耳の間の頭の髪を剃ります。
    注:使用されるイオブルランの濃度は、誘導室のサイズに依存します。したがって、より小さいチャンバの場合、3〜4%のイオブルランは効果的に麻酔を誘発するために使用することができ、より大きい部屋は5%まで要求する。
  3. 麻酔のための立体外科手術ステーションノーズコーン(手術のための維持のために1.5-2%)にマウスを移動し、耳の棒を使用して頭を安定させ、体温を保つために加熱パッド上でマウスを維持します。
  4. 両眼を眼軟膏で潤滑する。0.25%ブピビカイン(8-12時間続くマウスに局所鎮痛を提供するため)の100 μLと4mg/mLデキサメタゾンの100 μL(手術処置に起因する炎症を軽減するため)を切開部位に注入します。マウスを5分以上座ってから次のステップに進みます。
  5. ベタジンと70%アルコールの3つの交互の綿棒で剃った頭をきれいにします。耳の間の頭蓋骨領域の後ろから目の前部領域まで延びる外科用ブレードまたはハサミを使用して、中線の頭皮切開を行います。残りの皮膚は頭蓋骨を露出させるために切断される。
  6. 頭皮と下層の頭蓋骨の間にある結合組織を過酸化水素3%(H2O2)2できれいにし、立体座標で画像化される脳領域を局所化する。2
    注:頭蓋骨表面の切開部から出血(ステップ1.5)がしばしばあります。この出血は通常、3〜5分以内にそれ自体で解決します。以前のブピバカイン治療(ステップ1.4)もこの間の出血の量を制限するために注意される。

2. マウス頭蓋窓移植手術

  1. 歯科ドリルビット(0.7mmの先端直径)を使用して頭蓋骨に円形の開口部〜4mmをドリルし、尖った鉗子を使用して頭蓋骨のこの部分を慎重に取り除きます。6-8週齢マウスの体性感覚皮質をイメージングする場合は、-2.5後部および±2.0側からブレグマに頭蓋骨の中心を見つける。掘削中に、定期的に脳を冷却し、骨の破片をきれいにし、最終的な除去のために頭蓋骨の骨を柔らかくするために滅菌生理水症と綿棒で頭蓋骨を湿らせた。
    注: 頭蓋骨切り出しの座標は、マウスの関心領域と年齢によって異なります。
  2. 頭蓋骨を取り除いた後、慎重に小さなカバーグラス(サイズ#00.1±0.02 mm厚)を焼頭切除術で生理食動物で湿らせた。無菌ワイプを使用して余分な生理食前を乾燥させます。
  3. 尖ったアプリケーター(ピペットチップや壊れた木製綿棒の尖った端など)を使用して、窓の周りにシアノアクリレート接着剤を塗布し、脳と頭蓋骨に取り付けることができます。頭蓋骨の残りの部分にプライマー接着剤を適用し、20-40 sの硬化光でそれを治す。最後の接着剤で窓の周りの井戸を準備し、20〜40 sの硬化光で治します。
  4. 小さなヘッドプレートを頭蓋切り出し術の逆半球の頭蓋骨に接着し、プライマー接着剤をプライマーとして最初に、そして最後の接着剤で接着します。それぞれ20〜40 sの硬化光で両方を治します。
    注:この手順で頭蓋骨が接着剤で覆われている場合は、縫合糸は必要ありません。

3. 手術後のケア

  1. マウスが麻酔がない状態で目を覚まし(加熱パッドで行われた回復は回復時間を短縮する)、完全に目を覚ますとホームケージに戻します。72時間で十分な術後鎮痛としてブプレノルフィンSR(0.5mg/kg)の皮下用量を1回注入する。
  2. 手術からの健全な回復を容易にするために、マウスに余分な柔らかい食べ物を提供し、これはゲルの形でチャウまたは食物を柔らかくするために水の規則的な固体チャウの形ですることができる。
    注:手術直後のソフトフードの1回限りの提供で十分です。
  3. 手術手順の最初の72時間の健康と適切な回復のために毎日マウスを監視します。その後、ウィンドウ移植手術から早くも2週間からイメージングを行う。
    注:うまくいけば、マウスは正常な歩行行動、十分なケージ探査、良好な水分補給、安定した体重増加、ケージ内の他のマウスおよびケージ内の他のマウスとの広範な相互作用を示すよく回復します。無気力、脱水症状および手術後の10%以上の体重減少を示すマウスは安楽死させ、研究から取り除かれる。

4. 初期画像撮影のための2光子脳マッピング

  1. マウスを麻酔します(イロフルラン、5%の誘導および1.5%の維持)。ねじを使用してヘッドプレートを2光子顕微鏡ステージに取り付け、35°Cの加熱プレートに維持してヘッドを安定させます。腹腔内100μLの血管染料(2mg/mL)などの血管染料を注入する。
    注:イメージングは、麻酔なしで目を覚ますマウスでも行うことができます。しかし、最近の研究では、麻酔がミクログリア30監視ダイナミクス27、28、2928に影響を及ぼし2729目覚めのマウスにおける2つの光子イメージングの頭部固定が、少なくとも25日間の慢性イメージング中でもストレスを増加させることが示されている(Juczewskiら、2020を参照)。
  2. 70%エタノールに手を入れた綿棒を使用して、頭蓋窓の表面を優しくきれいにしてください。頭蓋窓に水や生理食いの数滴を入れて、目的が浸漬レンズであるため、溶液中に対物レンズを下げます。
  3. 上花序によって接眼を見ながら、ラボノートブックの主要な血管のランドマークを示すために粗い地図を手描きします。この図面を使用して、2 つのフォトン イメージング中に特定の領域を識別します。あるいは、顕微鏡に取り付けられたカメラを通して、または手持ち型のカメラまたは携帯電話を通して血管の写真を撮る。
    注:これらの手描きの画像と写真は、2つの光子イメージングの前に顕微鏡下で同じ広い領域を再訪するのを容易にすることです。これらは正確な画像マッピングではありません。
  4. 2つの光子イメージングの下で、必要に応じて蛍光細胞および血管の画像を収集する。適切な座標で注意深くメモを取り、正確な領域を再検討して後のイメージングを行えるようにします。この初期イメージングセッションでは、例えば、1~2μmごとに組織の体積を通してzスタック画像を取得するなどの視野をいくつか収集します。
    注:2つの光子で画像を収集しながら、血管のランドマークは粗いマッピングのために使用されます。微細なマッピングが必要な場合は、Thy1-YFP31マウスからのYFP標識デンドライトが使用される。
    1. イメージングに推奨されるこれらのパラメータを使用:880-900 nmの波長が最適です。GFPおよび/またはdsRed / ローダミン励起のために、525/50 nm(緑のチャネル)および620/60 nm(赤チャネル)の放出フィルターが付いている565 nmの二色性ミラーが使用される;GFP および YFP 分離では、500/15 および 537/26 nm のエミッション フィルターを備えた 509 nm の二色性ミラーが使用されます。脳の力は25 mW以下に維持される;画像解像度は1024 x 1024ピクセルで、1.5Xズーム倍率で25X 0.9 NAの目標で撮影された視野は295.24 x 295.24 μmです。
  5. イメージングの最後に、マウスをステージから外し、麻酔から目を覚まし、将来のイメージングセッションまで自宅のケージに戻ります。

5. 2光子イメージングと再イメージング

  1. 将来のイメージングセッションでは、最初のイメージングセッションの数時間から数ヶ月後に、マウス(イソフルラン、5%誘導および1.5%メンテナンス)を麻酔し、2光子顕微鏡に取り付け、加熱プレートに維持し、Rhodamine B(2mg/mL)などの血管染色を100μl再注入します。
  2. 以前に取得したイメージを ImageJ で開き、これらのイメージと前のセッションのノートを使用して、以前にイメージされた領域を識別し、慎重に再イメージ化します。
  3. イメージングウィンドウが明確であるか、研究の範囲に不可欠である限り、これを繰り返します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

生体内の微小グリアダイナミクスを可視化するために、二重トランスジェニックCX3CR1GFP/+:Thy1YFPマウスを用いた。Thy1-YFP H ラインは、ミクログリア(GFP)とニューロン(YFP)の花相オーバーを避けるために、Thy1-GFP M ラインとは対照的に使用されます。別のアプローチは、例えば、tdTomatoとThy1-GFP Mラインを使用することができるミクログリアがラベル付けされているレポーターラインを使用することができます。H線の欠点は、YFPが多くのニューロンにラベルを付け、年齢の増加に伴ってラベルが増加する(個人的な観察)。M線はニューロンのまばらな標識を示す。窓の注入の外科の2-4週間の間に、マイクログリアの動態は繰り返しのイメージ投射によって続くことができる。大きな血管は特定の領域を局所化するために使用され、YFP標識デンドライトは脳領域の微細なマッピングに使用されます。このアプローチでは、特定の樹状突起を脳領域の微細マッピングの安定したランドマークとして使用することができます(図1、図1bの矢印)。樹状突起は安定しているが、一部のミクログリアは毎日移動する(図1c)。

さらに、このアプローチは、長期における週1回の縦断イメージングに十分である。したがって、単一のトランスジェニックCX3CR1GFP/+マウスを用いて、ローダミンBの腹腔内注射と結合して、各イメージングセッション中に血管系を最大8週間標識したミクログリアを用いた(図2)。あるいは、上で説明したように、Thy1マウスは縦方向の微細マッピングに使用することができる。週に1回のイメージングが行われると、血管系は安定的に固定されていると指摘されるが、ミクログリアは図2の3つの特定の関心領域(ROI、破線円)に示すように動的であると見ることができる。トップROIでは、ミクログリアはイメージングの4週目までにROIに入り始め、イメージングの8週目まで続きます。二股血管を有する中ROIでは、3週目に下半身の周りにミクログリア細胞が現れ、第6週に失われ、7目に上血管に別のミクログリアが現れ、第8週に維持される。最後に、下部ROIでは、6週目まで維持され、イメージングの7および8週目に失われたミクログリア細胞である。これらの結果は、数週間から数ヶ月にわたる微小的な位置ネットワークの動的変化を示す。

このアプローチは、急性傷害後または病的疾患進行中の細胞ダイナミクスを調査するためにも使用することができる。単一のトランスジェニックCX3CR1GFP/+マウスを用いて、ローダミンBの腹腔内注射と結合して、前に血管系に標識を付け(データは示さない)、カイニック酸によって誘発された重度の発作に続く(図3)。発作後、血管床構造は、過度の摂動なしに維持される(図3a)。しかし、ミクログリア細胞ネットワークと位置景観は一過性に変化し(一部の細胞は「得られる」、他の細胞は視野で「失われる」)、発作の24〜48時間以内に大きな変化が72時間(図3b)で既に報告されたように32。

最後に、このアプローチは、細胞と細胞の相互作用を調査したり、神経細胞タイプ間のダイナミクスを比較するためにも使用できます。二重トランスジェニックCX3CR1GFP/+:NG2dsRed/+マウスを使用して、生体内のミクログリアおよびNG2+細胞を追跡した。+血管系にラベルを付けなくても、ミクログリアおよびNG2細胞を同定することができる(図4a)。NG2は、血管関連ペリサイトとオリゴデンドロサイト前駆細胞(OpPC)33,34,34の両方に標識するプロテオグリカンである。ペリサイトは通常、血管壁に沿って続く細長いプロセスを有する(図4aの矢印で推定的に同定される)、およびAPCは、通常、血管から離れた脳の円疹に存在するより大きな細胞体を示す(図4aの矢印で推定的に同定される)。十分に近縁細胞とBPCを区別するために,血管系はローダミンBで標識される。NG2+血管関連細胞(ペリサイト、矢印)の明るい蛍光は、2つの光子イメージングによる同様の励起にもかかわらず、ルキナールローダミンのかすかな蛍光と区別することができる(図4b,c)。毎日のイメージングは、周皮細胞が安定して配置されていることを示し、一方、APC(図4bのアスタリスク)とミクログリア(図4bの円)は、以前のレポート32、35、3635,36と動的に一致している。32

Figure 1
図1:二重トランスジェニックCX3CR1GFP/+における神経デンドライトによる微細マッピングを用いたミクログリアの毎日のイメージング:Thy1YFPマウス(a)二重トランスジェニックCX3CR1GFP/+:Thy1YFPマウスからのミクログリア(緑色)および樹状突起(赤)の代表的な2光子像。(b-c), (a) で箱入り領域の毎日の画像は、繰り返し画像化された樹状突起 (b の矢印) とミクログリアと樹状突起を示す (c) 。樹状構造は位置的に安定であったが、一部のミクログリアは、その後の日に元の位置から転位することが指摘された。このような細胞は、数(1、2または3)で同定した。前日、彼らの位置は白いアスタリスクで示され、その後の日に、彼らの位置は黄色のアスタリスクで示されました。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 2
図2:CX3CR1GFP/+マウスにおける数ヶ月間のミクログリアの長期の週次イメージング。(a-h)、急性標識血管系(赤、ローダミン、2mg/mL、i.p.)を使用して、CX3CR1GFP/+マウスからのミクログリア(緑色)の代表的な2光子画像を、最大8週間の微小系ネットワークを追跡する粗いランドマークとして使用する。血管系は、イメージング期間を通じて構造的に安定していた。血管系(破線の円)を持つ3つの小さな領域が強調され、微小小ソマタがそれらの領域(上の2つの破線円)または外(下の円)に移動することを示す。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 3
図3:発作後のCX3CR1GFP/+マウスにおけるミクログリアの長期の毎日のイメージング。(a-b)、ミクログリア(緑色)と血管系の急性標識(赤、ローダミン、2mg/mL、i.p.)を有する特定の脳領域の同じ視野の毎日のイメージング中の代表的な2光子画像。イメージングは、ケモコンブLslsive剤であるカイエン酸を用いた重篤な発作の誘導後に開始される。血管構造を個々の血管セグメント(矢印)として維持し、経時(a)を経て同定できる。しかし、発作後の最初の2日間は微小ネットワークダイナミクスが増加し、3日目までに正常なレベルに戻る(b)。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 4
図4:CX3CR1GFP/+:NG2dsRed/+マウスにおけるミクログリアおよびNG2+細胞の毎日のイメージング。+(a)生体内のミクログリア(緑色)およびNG2+細胞(赤)の代表的な2光子像。標識されていない血管系は、NG2細胞(血管細胞、推定は矢頭で同定される)および血管系に関連しないNG2細胞(オリゴデンドロサイト前駆細胞またはAPC、推定的に矢印で同定される)を区別することができない。(b)ロダミンで標識された血管系を用いた連続した撮像におけるミクログリア(緑色)およびNG2+細胞(赤)の代表的な2光子像。Pericytes (矢印) は静止していますが、APC は動的です (白から黄色のアスタリスク)。ミクログリアもダイナミックです(円:破線の円はミクログリアのない位置を表し、塗りつぶされた円は対応するミクログリアを持つ位置を表します)。この図の大きなバージョンを表示するには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

in vivo 2光子イメージングの出現は、健康な脳で起こる細胞相互作用とダイナミクスの多くを探求する機会を開きました。初期研究は、急性および慢性画像化37、38,38の両方による画像神経樹状突起への開いた頭蓋骨開頭切開法アプローチの使用に焦点を当てた。これはまた、脳内の神経免疫相互作用を解明するために使用することができます。.このプロトコルは、蛍光タグ付き細胞(特にミクログリア、脳の常駐免疫細胞)を長期間にわたって短期間にわたって高い信頼性の高いイメージングを行う方法を説明する。色素標識血管および/または蛍光タグ付きデンドライトの使用は、細胞の繰り返し、信頼性の高いイメージングを可能にするために、対象となる脳領域の粗いまたは細かいマッピングのために詳述される。Thy1YFP線は微細な脳マッピングに使用することが示唆されるが、代替アプローチは、子宮エレクトロポレーション39、40、40早期出生後AAV注射41またはTRAPマウス3942の使用のような選択された神経集団を標識するために他の技術またはマウスラインを使用することができる42。さらに、皮質イメージングがこの議論の焦点であったが、このアプローチは、43と同様に長期における深部脳構造を可視化するために適応することができる。

このプロトコルでは、各マウスの手術手順は、麻酔の開始から麻酔からの回復まで30〜60分で完了することができる。手術中、頭蓋骨は慎重に取り除かれ、少なくとも2週間後に長期イメージングのために埋め込まれる無菌カバーグラスに置き換えられます。死亡率は非常にまれです(5% 未満)。野生型マウスでは、P2Y12Rノックアウトマウスのような凝固問題を有するマウスは、より高い死亡率および手術不全を示すが、このようなマウスでは、出血は長期間持続し、マウスは内出血による合併症のために頭蓋切除術の最初の48時間以内に死ぬ可能性がある。このプロトコルから埋め込まれた窓を有するマウスは感染の兆候を示すために気付かされておらず、プロトコルはマウスの50〜80%で長期イメージングのための明確な窓を生成するために確実に使用することができる。

現在の慢性的な窓の移植アプローチに代えて、薄い頭蓋骨のアプローチは、無傷の脳内の脳細胞を繰り返し視覚化するために存在する。いくつかの研究は、窓の注入,アプローチ22、23、24、25,23よりも薄い頭蓋骨アプローチの選択の価値と優先順位を強調,24している。そのアプローチの約束は、適切に行われると、グリア細胞の活性化の欠如、より生理的な脊椎の低回転率、脳生理学にも影響を与える可能性のある抗炎症剤の使用の必要性の欠如を含む、現在のアプローチのいくつかの顕著な限界または欠点を打ち消すので無視されるべきではありません。特定の研究問題に対するアプローチを選択する際には、このプロトコルで詳細に説明するアプローチを選択する前に、これらの重大な制限を考慮する必要があります。

しかし、このアプローチの魅力は4倍です。第一に、頭蓋窓の注入アプローチは、薄い頭蓋骨の手順に対するこの手順の習得の容易さのために魅力的である。適切な頭蓋骨の間引きは常に実験者によって習得することはできませんし、うまく行われていない場合は、その魅力を制限するグリア活性化につながる可能性があります。第二に、この頭蓋窓注入アプローチは、脳が光学的に透明な窓を通して画像化されるにつれて、脳構造の強力な深さの明瞭さを与える。イメージングに使用できるウィンドウは、通常、薄い頭蓋骨アプローチで使用されるウィンドウよりもはるかに大きく、分析のためにより大きな量の組織にアクセスできます。第三に、深さの明瞭さのように、ガラスカバースリップが均一に薄く、明確であるので、このアプローチは窓を通して均一な明瞭さを可能にする。これにより、セッション間および動物間の比較が容易になります。繰り返しのセッション中や動物間の間で窓全体の明瞭さを確保するためには、細い頭蓋骨技術に特別な専門知識が必要です。最後に、このアプローチは、時間から数日から数週間、さらには数年のイメージングの頻度に大きな柔軟性を提供します。薄い頭蓋骨のアプローチでは、最大5回の繰り返しが示唆されている24.

このアプローチの将来のアプリケーションは多くあります。第一に、アプリケーションは、正常な生理学と病理の両方で脳内の新しい神経-神経膠血管相互作用を解明することを含むことができる。第二に、この手順では、存在細胞が議論されているが、このアプローチは、急性傷害の間、慢性脳感染、および/または神経変性状態の間に、それぞれの蛍光タグ付き細胞を有するマウスが利用可能である限り、免疫系細胞に浸透するダイナミクスおよび相互作用を研究するために使用することができる。最後に、このアプローチは、主に脳細胞の構造研究の文脈で議論されている。しかし、例えばカルシウム44、45、46,46または電圧イメージング44技術47、48を使用して機能的イメージングの出現に伴い48このアプローチは、健康および疾患における経時の機能的イメージングに使用することができる。,

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者らは開示するものは何もない。

Acknowledgments

この原稿で紹介するアイデアについて、Eyo研究室のメンバーに感謝します。私たちは、NG2DsRedマウス33の贈り物のためにバージニア大学のキプニスラボからジャスティン・ルステンホーフェン博士に感謝します.この研究は、国立衛生研究所の国立神経疾患・脳卒中研究所からU.B.E(K22 NS104392)への資金提供によって支えられている。

Materials

Name Company Catalog Number Comments
Coverglass (3mm) Warner Instruments 64-0726
Cyanoacrylate glue (Krazy Glue) Amazon https://www.amazon.com/Krazy-Glue-Original-Purpose-Instant/dp/B07GSF31WZ/ref=sr_1_2?keywords=krazy+glue&qid=1583856837&s=pet-supplies&sr=8-2
Demi Ultra LED Curing Light System Dental Health Products, Inc 910860-1
Dental Drill Osada: www.osadausa.edu EXL-M40
Drill Bit Fine Science Tools #19008-07
Eye Ointment Henry Schien 1338333
iBond Total Etch (Primer glue) Chase Dental Supply (Heraeus Kulzer) 66040094
Rhodamine B Millipore Sigma 81-88-9 (R6626)
Tetris Evoflow glue (Final glue) Top Dent (Ivoclar Vivadent) #595956
Wahl Brav Mini+ Amazon https://www.amazon.com/Wahl-Professional-Animal-BravMini-41590-0438/dp/B00IN24ILE/ref=asc_df_B00IN24ILE/?tag=hyprod-20&linkCode=df0&hvadid=167141013968&hvpos=&hvnetw=g&hvrand=12368793083893626704&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9008337&hvtargid=pla-332197544154&psc=1

DOWNLOAD MATERIALS LIST

References

  1. Engle, S. J., Blaha, L., Kleiman, R. J. Best Practices for Translational Disease Modeling Using Human iPSC-Derived Neurons. Neuron. 100 (4), 783-797 (2018).
  2. Osaki, T., Shin, Y., Sivathanu, V., Campisi, M., Kamm, R. D. In Vitro Microfluidic Models for Neurodegenerative Disorders. Advanced Healthcare Materials. 7 (2), (2018).
  3. Croushore, C. A., Sweedler, J. V. Microfluidic systems for studying neurotransmitters and neurotransmission. Lab Chip. 13 (9), 1666-1676 (2013).
  4. Wu, V. W., Schwartz, J. P. Cell culture models for reactive gliosis: new perspectives. J Neuroscience Research. 51 (6), 675-681 (1998).
  5. Abbott, N. J. Astrocyte-endothelial interactions and blood-brain barrier permeability. Journal of Anatomy. 200 (6), 629-638 (2002).
  6. Humpel, C. Organotypic brain slice cultures: A review. Neuroscience. 305, 86-98 (2015).
  7. Pena, F. Organotypic cultures as tool to test long-term effects of chemicals on the nervous system. Current Medicinal Chemistry. 17 (10), 987-1001 (2010).
  8. Humpel, C. Organotypic Brain Slice Cultures. Current Protocols in Immunology. 123 (1), 59 (2018).
  9. Heine, C., Franke, H. Organotypic slice co-culture systems to study axon regeneration in the dopaminergic system ex vivo. Methods in Molecular Biology. 1162, 97-111 (2014).
  10. Croft, C. L., Futch, H. S., Moore, B. D., Golde, T. E. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Molecualar Neurodegeneration. 14 (1), 45 (2019).
  11. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248 (4951), 73-76 (1990).
  12. Kerr, J. N., Denk, W. Imaging in vivo: watching the brain in action. Nature Review Neurosciences. 9 (3), 195-205 (2008).
  13. Akassoglou, K., et al. In Vivo Imaging of CNS Injury and Disease. Journal of Neuroscience. 37 (45), 10808-10816 (2017).
  14. Tran, C. H., Gordon, G. R. Astrocyte and microvascular imaging in awake animals using two-photon microscopy. Microcirculation. 22 (3), 219-227 (2015).
  15. Tvrdik, P., Kalani, M. Y. S. In Vivo Imaging of Microglial Calcium Signaling in Brain Inflammation and Injury. International Journal of Molecular Sciences. 18 (11), 2366 (2017).
  16. Bennett, F. C., et al. A Combination of Ontogeny and CNS Environment Establishes Microglial Identity. Neuron. 98 (6), 1170-1183 (2018).
  17. Bohlen, C. J., et al. Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures. Neuron. 94 (4), 759-773 (2017).
  18. Mueller, K. L., Hines, P. J., Travis, J. Neuroimmunology. Science. 353 (6301), 760-761 (2016).
  19. Kipnis, J., Filiano, A. J. Neuroimmunology in 2017: The central nervous system: privileged by immune connections. Nature Reviews Immunology. 18 (2), 83-84 (2018).
  20. Moloney, R. D., Desbonnet, L., Clarke, G., Dinan, T. G., Cryan, J. F. The microbiome: stress, health and disease. Mammalian Genome. 25 (1-2), 49-74 (2014).
  21. Skonieczna-Zydecka, K., Marlicz, W., Misera, A., Koulaouzidis, A., Loniewski, I. Microbiome-The Missing Link in the Gut-Brain Axis: Focus on Its Role in Gastrointestinal and Mental Health. Journal of Clinical Medicine. 7 (12), 521 (2018).
  22. Xu, H. T., Pan, F., Yang, G., Gan, W. B. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nature Neuroscience. 10 (5), 549-551 (2007).
  23. Pan, F., Gan, W. B. Two-photon imaging of dendritic spine development in the mouse cortex. Developmental Neurobiology. 68 (6), 771-778 (2008).
  24. Yang, G., Pan, F., Parkhurst, C. N., Grutzendler, J., Gan, W. B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nature Protocols. 5 (2), 201-208 (2010).
  25. Grutzendler, J., Yang, G., Pan, F., Parkhurst, C. N., Gan, W. B. Transcranial two-photon imaging of the living mouse brain. Cold Spring Harbor Protocols. 2011 (9), (2011).
  26. Jung, S., et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Molecular Cell Biology. 20 (11), 4106-4114 (2000).
  27. Liu, Y. U., et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nature Neuroscience. 22 (11), 1771-1781 (2019).
  28. Stowell, R. D., et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nature Neuroscience. 22 (11), 1782-1792 (2019).
  29. Sun, W., et al. In vivo Two-Photon Imaging of Anesthesia-Specific Alterations in Microglial Surveillance and Photodamage-Directed Motility in Mouse Cortex. Frontiers in Neuroscience. 13, 421 (2019).
  30. Juczewski, K., Koussa, J., Kesner, A., Lee, J., Lovinger, D. Stress and behavioral correlates in the head-fixed method. bioRxiv. , (2020).
  31. Feng, G., et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 28 (1), 41-51 (2000).
  32. Eyo, U. B., et al. P2Y12R-Dependent Translocation Mechanisms Gate the Changing Microglial Landscape. Cell Reports. 23 (4), 959-966 (2018).
  33. Nishiyama, A., Komitova, M., Suzuki, R., Zhu, X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nature Review Neurosciences. 10 (1), 9-22 (2009).
  34. Zhu, X., Bergles, D. E., Nishiyama, A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development. 135 (1), 145-157 (2008).
  35. Hughes, E. G., Kang, S. H., Fukaya, M., Bergles, D. E. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nature Neuroscience. 16 (6), 668-676 (2013).
  36. Berthiaume, A. A., et al. Dynamic Remodeling of Pericytes In Vivo Maintains Capillary Coverage in the Adult Mouse Brain. Cell Reports. 22 (1), 8-16 (2018).
  37. Trachtenberg, J. T., et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 420 (6917), 788-794 (2002).
  38. Holtmaat, A. J., et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron. 45 (2), 279-291 (2005).
  39. Wang, C., Mei, L. In utero electroporation in mice. Methods in Molecular Biology. 1018, 151-163 (2013).
  40. Matsui, A., Yoshida, A. C., Kubota, M., Ogawa, M., Shimogori, T. Mouse in utero electroporation: controlled spatiotemporal gene transfection. Journal of Visualized Experiments. (54), e3024 (2011).
  41. Chakrabarty, P., et al. Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain. PLoS One. 8 (6), 67680 (2013).
  42. Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C., Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron. 78 (5), 773-784 (2013).
  43. Pilz, G. A., et al. Live imaging of neurogenesis in the adult mouse hippocampus. Science. 359 (6376), 658-662 (2018).
  44. Wu, J., et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nature Methods. 17 (3), 287-290 (2020).
  45. Yang, W., Yuste, R. In vivo imaging of neural activity. Nature Methods. 14 (4), 349-359 (2017).
  46. Hannan, S., et al. In vivo imaging of deep neural activity from the cortical surface during hippocampal epileptiform events in the rat brain using electrical impedance tomography. Neuroimage. 209, 116525 (2020).
  47. Kulkarni, R. U., et al. In Vivo Two-Photon Voltage Imaging with Sulfonated Rhodamine Dyes. ACS Central Science. 4 (10), 1371-1378 (2018).
  48. Chamberland, S., et al. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. Elife. 6, (2017).

Tags

免疫学と感染症,問題162,ミクログリア,神経免疫,画像化,2光子,血管系,樹状突起,NG2細胞
マウスにおける神経免疫ダイナミクスの反復インビボイメージングを行う正確な脳マッピング
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Bisht, K., Sharma, K., Eyo, U. B.More

Bisht, K., Sharma, K., Eyo, U. B. Precise Brain Mapping to Perform Repetitive In Vivo Imaging of Neuro-Immune Dynamics in Mice. J. Vis. Exp. (162), e61454, doi:10.3791/61454 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter