Presentato qui è un protocollo per studiare il microcircolo coronarico nel tessuto cardiaco murino vivente monitorando ex vivo la pressione e il flusso di perfusione arteriosa che mantiene la pressione, così come i componenti dell’albero vascolare tra cui i letti capillari e i periciti, poiché l’arteria settale è cannulata e pressurizzata.
Il tono arterioso coronario insieme all’apertura o alla chiusura dei capillari determinano in gran parte il flusso sanguigno ai cardiomiociti a pressione perfusionale costante. Tuttavia, è difficile monitorare i cambiamenti dinamici delle arteriole coronarie e dei capillari in tutto il cuore, principalmente a causa del suo movimento e del battito non-stop. Qui descriviamo un metodo che consente il monitoraggio della velocità di perfusione arteriosa, della pressione e dei cambiamenti di diametro delle arteriole e dei capillari nei muscoli papillari ventricolari destro del topo. L’arteria del setto di topo viene cannulata e perfusa a un flusso o pressione costante con l’altra misurata dinamicamente. Dopo la perfusione con una lectina etichettata fluorescentmente (ad esempio, Alexa Fluor-488 o -633 etichettata Wheat-Germ Agglutinin, WGA), le arteriole e i capillari (e altri vasi) nel muscolo papillare ventricolo destro e nel setto potrebbero essere facilmente immagini. I cambiamenti del diametro del vaso potrebbero quindi essere misurati in presenza o assenza di contrazioni cardiache. Quando sono state espresse proteine fluorescenti geneticamente codificate, è stato possibile monitorare caratteristiche specifiche. Ad esempio, i periciti sono stati visualizzati nei cuori dei topi che esprimevano NG2-DsRed. Questo metodo ha fornito una piattaforma utile per studiare le funzioni fisiologiche dei periciti capillari nel cuore. È adatto anche per studiare l’effetto dei reagenti sul flusso sanguigno nel cuore misurando contemporaneamente il diametro vascolare/capillare e la pressione luminare arteriosa. Questa preparazione, combinata con un sistema di imaging ottico all’avanguardia, consente di studiare il flusso sanguigno e il suo controllo a livello cellulare e molecolare nel cuore in condizioni quasi fisiologiche.
Un’adeguata regolazione coronarica del flusso di pressione assicura un apporto di sangue sufficiente al cuore per soddisfare le sue esigenzemetaboliche 1. Tuttavia, solo di recente è diventato chiaro come il flusso di pressione coronarica sia regolato dinamicamente nel cuore, nonostante studi approfonditi che sono stati eseguiti in vivo e in vitro negli ultimi decenni. Uno dei motivi è la difficoltà di stabilire un modello di lavoro fisiologico per tali studi a causa del costante battito del cuore. Indipendentemente da ciò, è stata stabilita una varietà di metodi per l’osservazione dei micro-vasi coronari nei tessuti viventi o negli animali, ma nessuno di questi metodi è stato in grado di ottenere una messa a fuoco costante / stabile e le misurazioni della pressione, del flusso e del diametro microvascolareallo stesso tempo 2,3. La visualizzazione diretta dei micro-vasi arteriosi coronari nel cuore pulsante è stata introdottadecenni fa 4,3, ma le misurazioni del diametro in piccoli vasi erano impegnative e le funzioni specifiche dei molti tipi di cellule specializzate associate al microcircolo erano ugualmente vessatorie. Anche il metodo stroboscopico e il sistema obiettivo flottante non sono stati in grado di fornire le informazioni di cui sopracontemporaneamente 5. Tuttavia, è stata ottenuta una quantità significativa di informazioni preziose utilizzando le suddette tecnologie, che ci hanno aiutato a capire di più sulla regolazione del flusso sanguigno coronarica6. Il metodo che stiamo descrivendo in questo documento aiuterà a indagare e comprendere in dettaglio come i componenti delle arterie coronarie, delle arteriole e della microvascolarizzazione rispondono in modo diverso alle stimolazioni e alle richieste metaboliche.
Il modello di lavoro che abbiamo stabilito per proseguire questi studi è stato costruito sul precedente lavoro di Westerhof etal. A seguito della cannulazione dell’arteria settale del cuore del topo, è stata utilizzata una fisiologica soluzione salina per perfondere quell’arteria per mantenere nutriti i miociti e altri componenti del tessuto cardiaco. La pressione arteriosa perfusione, il flusso e il diametro vascolare sono stati monitorati tra le altre funzioni fisiologiche utilizzando opportuni indicatori fluorescenti. Questo metodo ci consente di visualizzare il letto microvascolare coronarico sotto pressione fisiologica nel tessuto vivente e studiare per la prima volta i meccanismi cellulari alla base della regolazione del microcircolo.
Nel presente lavoro, abbiamo introdotto un metodo ex vivo straordinariamente semplice ma altamente pratico per studiare il microcircolo coronarica nel cuore in condizioni fisiologiche. Questo metodo è stato modificato da indagini meccaniche utilizzando ratti2. L’aggiunta impegnativa è stata la tecnologia di imaging ad alta velocità e alta risoluzione ottica. Abbiamo quindi potuto usufruire dei sistemi avanzati di imaging ottico ora disponibili in commercio. Con un’attenta dissezione e posiziona…
The authors have nothing to disclose.
Questo lavoro è stato sostenuto in parte dal Centro per l’Ingegneria e la Tecnologia Biomedica (BioMET); NIH (1U01HL116321) e (1R01HL142290) e l’American Heart Association 10SDG4030042 (GZ), 19POST34450156 (HCJ).
1 M CaCl2 solution | MilliporeSigma, USA | 21115 | |
1 M MgCl2 solution | MilliporeSigma, USA | M1028 | |
AxoScope software | Molecular Devices, San Jose, CA, USA | ||
Chiller/water incubator | FisherScientific, USA | Isotemp 3016S | |
Confocal | Nikon Instruments, USA | A1R | |
Custom glass tubing | Drummond Scientific Company | 9-000-3301 | |
Digidata 1322A | Molecular Devices, San Jose, CA, USA | ||
Dissecting microscope | Olympus, Japan | SZX12 | |
Endothelin-1 | MilliporeSigma, USA | E7764 | |
Forceps | Fine Scientific Tools | 11295-51 | |
Heparin Sodium Salt | Sigma-Aldrich, USA | H3393 | |
Inline solution Heater | Warner Istruments, Hamden, CT, USA | SH-27B | |
Isoflurane | VETone, Idaho, USA | 502017 | |
Micropipette puller | Sutter Instruments, Novato, CA, USA | P-97 | |
Micropipette/cannula holder | Warner Istruments, Hamden, CT, USA | 64-0981 | |
NG2DsRedBAC transgenic mouse | The Jackson Laboratory | #008241 | |
Nylon thread for tying blood vessels | Living Systems Instrumentation, Burlington, Vt, USA | THR-G | |
PDMS (polydimethylsiloxane) | SYLGARD, Germantown, WI, USA | 184 SIL ELAST KIT | |
Peristaltic pump | Gilson, Middleton, WI, USA | minipuls 3 | |
Pressure Servo Controller | Living Systems Instrumentation, Burlington, Vt, USA | PS-200-S | |
Scissors | Fine Scientific Tools, Foster City, CA, USA | 15000-10 | |
Servo Pump | Living Systems Instrumentation, Burlington, Vt, USA | PS-200-P | |
Temperature controller | Warner Instruments, Hamden, CT, USA | TC-324B | |
Wheat Germ Agglutinin, Alexa Fluor 488 Conjugate | ThermoFisher Scientific, Waltham, MA USA | W11261 |