Photoacoustic cystography (PAC) has a great potential to map urinary bladders, a radiation sensitive internal organ in pediatric patients, without using any ionizing radiation or toxic contrast agent. Here we demonstrate the use of PAC for mapping urinary bladders with an injection of optical-opaque tracers in rats in vivo.
Conventional pediatric cystography, which is based on diagnostic X-ray using a radio-opaque dye, suffers from the use of harmful ionizing radiation. The risk of bladder cancers in children due to radiation exposure is more significant than many other cancers. Here we demonstrate the feasibility of nonionizing and noninvasive photoacoustic (PA) imaging of urinary bladders, referred to as photoacoustic cystography (PAC), using near-infrared (NIR) optical absorbents (i.e. methylene blue, plasmonic gold nanostructures, or single walled carbon nanotubes) as an optical-turbid tracer. We have successfully imaged a rat bladder filled with the optical absorbing agents using a dark-field confocal PAC system. After transurethral injection of the contrast agents, the rat’s bladders were photoacoustically visualized by achieving significant PA signal enhancement. The accumulation was validated by spectroscopic PA imaging. Further, by using only a laser pulse energy of less than 1 mJ/cm2 (1/20 of the safety limit), our current imaging system could map the methylene-blue-filled-rat-bladder at the depth of beyond 1 cm in biological tissues in vivo. Both in vivo and ex vivo PA imaging results validate that the contrast agents were naturally excreted via urination. Thus, there is no concern regarding long-term toxic agent accumulation, which will facilitate clinical translation.
X-ray cystography1 is an imaging process to identify bladder-related diseases such as bladder cancer, vesicoureteral reflux, blockage of ureters, neurogenic bladder, etc.2-5 Typically, urines are voided and a radio-opaque agent is injected through a catheter. Then, fluoroscopic X-ray images are acquired to delineate urinary bladders. However, the key safety issue is that harmful ionizing radiation is used in this procedure. The percentage of cumulative cancer risk to age 75 years owing to diagnostic X-rays ranges from 0.6 to 1.8%.6 In addition, the carcinogenic threat is significant in pediatric patients. A UK study showed that among 9 major internal organs, the average annual radiation dose from diagnostic X-rays was highest in the bladders in female children less than 4 and second highest in male children less than 4.7 This indicates that the bladder cancer risk is most significant in pediatric patients. Although pediatric radiologists endeavor to reduce the radiation exposure rate as low as reasonably achievable, ionizing radiation cannot be completely excluded. Therefore, the limitation creates a need for a completely radiation-free, sensitive, cost-effective, and high-resolution imaging modality with nonradioactive contrast agents in cystography.
Recently, photoacoustic tomography (PAT) has become a premier biomedical imaging modality because PAT can provide strong optical absorption contrasts and a high ultrasonic spatial resolution in biological tissues.8 The principle of PAT is that ultrasonic waves are induced due to thermoelastic expansion of a target followed by light absorption. By detecting time-resolved acoustic waves travelling via a medium, two- or three-dimensional photoacoustic (PA) images are formed. Because ultrasound (US) is much less scattered in tissues compared to light (typically two or three orders of magnitude), the imaging depth of PAT can reach up to ~8 cm in tissues, while the spatial resolution is maintained to 1/200 of the imaging depth.9 The key advantages of PAT for the cystographic application include: (1) PAT is completely free from ionizing radiation. (2) ClinicalUSimaging systems can be easily adapted to supply dual-modal PA and US imaging capabilities. Thus, the dual-modal PA/US imaging system can be relatively portable, cost-effective, and fast, which are key criteria for fast clinical translation. Using both endogenous and exogenous contrasts, PAT has provided high-resolution morphological, functional, and molecular imaging of tissues to study tumor physiopathology, brain hemodynamics, internal organs, ophthalmology, angiography, and etc. 10-16
In this article, we demonstrate the experimental protocols of nonionizing photoacoustic cystography (PAC) using near-infrared (NIR) optical absorbents (i.e. methylene blue, gold nanocages, or single walled carbon nanotubes) as nontoxic optical-turbid tracers. Rat bladders filled with the contrast agents were photoacoustically and spectroscopically delineated in vivo. No agents persistently accumulated in the bladders and kidneys of the rats. Thus, long-term toxicity which may be caused by agent accumulation can be excluded. This result implies that PAC with combination of the optical absorbers can potentially be a truly harmless cystographic modality for pediatric patients. The system configuration, system alignment, and in vivo / ex vivo imaging procedures are discussed in this article.
1. Deep Reflection Mode Photoacoustic Cystography (PAC) System
2. In vivo and Ex vivo Imaging Procedures
Figure 1 shows the In vivo nonionizing and noninvasive PAC using optically turbid methylene blue (MB). The control PA image was obtained at 667 nm, at the peak optical absorption for MB (Figure 1A). Although the blood vessels in the FOV are clearly visualized, the bladder is invisible because it is optically transparent at this wavelength. As shown in Figure 1B, the bladder is clearly revealed in the PA image acquired at 0.2 hr post-injection of MB. To confirm the accumulation of MB in the bladder, we used two optical wavelengths (667 and 850 nm) to distinguish between the bladder filled with MB from the surrounding structures. As shown in Figure 1C, the PA amplitudes within the bladder are not visible because the optical absorption coefficient of MB at 850 nm is nearly 0. Thus, this result indicates that the bladder is filled with MB. As a result, it demonstrates that the spectroscopic PA image can clearly distinguish different endogenous and exogenous choromophores. Figures 1D and 1E show the depth-resolved PA B-scan images, scanned along the dotted line in Figures 1A and 1B, respectively. The top surface of the bladder was located at the ultrasound transducer focal point both in vivo and ex vivo imaging. The position of the bladder along the depth direction is clearly identified, ~3.5 mm below the skin surface. In addition, the PA signals within the bladder measured at 24 and 48 hr post-injection are almost identical to the signal obtained at pre-injection. This result implies that the injected contrast agent was completely removed from the body, and no agent accumulated. Therefore, no long-term agent toxicity is expected in our approach. Moreover, the depth of the post-injection PA image (Figure 1B) is encoded using a pseudo color in Figure 2. The position of the bladder is ~3.5 mm below the skin surface, which correlates well with the depth-resolved PA B-scan image (Figure 1E). The typical depths of the top and bottom boundaries of a pediatric bladder are ~1.4 and 4.3 cm, respectively, from the abdominal surface. By using only a laser pulse energy of less than 1 mJ/cm2 (1/20 of the safety limit), our current imaging system could map the methylene-blue-filled-rat-bladder at the depth of beyond 1 cm in biological tissues in vivo.17 As we above mentioned, the imaging depth of PAT can reach up to ~8 cm in tissues with aid of methylene blue.9
After all in vivo imaging experiments, we excised two major organs, bladder and kidney to investigate biodistribution. As a control, a bladder and kidney were excised from a healthy rat. The PA signals measured within the removed bladders and kidneys from two groups of rats are nearly identical, demonstrating that no agent accumulated in the organs.
Figure 1. In vivo nonionizing and noninvasive PAC using optically opaque methylene blue (MB). (A) Control PA image of a rat’s abdominal area acquired at pre-injection of MB with an optical wavelength of 667 nm, showing only blood vessels (BV). This wavelength matches with the optical absorption peak of MB. (B) PA image obtained at 0.2 hr post-transurethral-injection of MB with an optical wavelength of 667 nm, revealing both BV and the bladder (BD) accumulated with MB. (C) PA image obtained at 850 nm after injection of MB. The BD filled with MB disappears in the PA image because the optical absorption of MB is minimal at this wavelength. (D) and (E) Depth-resolved PA B-scan images cut along the dotted lines in (A) and (B), respectively. Reprinted with permission from ref 17. Copyright 2011 Optical Society of America.
Figure 2. Depth-encoded PA image of Figure 1B. The color represents the depth information. BV, blood vessels; BD, bladder; and MB, methylene blue.
In conclusion, we have shown the possibility of nonionizing PAC using nontoxic optical absorbers in a rat model in vivo. We have successfully imaged a rat bladder filled with optical absorbents using our nonionizing and noninvasive PAC system. Two critical safety issues have been resolved in our approach: (1) the use of nonionizing radiation for cystographic applications and (2) no accumulation of contrast agents in the body.
Our clinical interest includes monitoring vesicoureteral reflux (VUR) in pediatric patients. About 3% of children in the United States are affected by urinary tract infections19, and approximately 1.5% of those patients suffer from VUR. In current clinical practice, all these patients directly undergo ionizing X-ray fluoroscopic imaging. The American Urological Association pediatric VUR clinical guidelines panel strongly recommends minimizing the use of ionizing radiation to the pediatric patients.20 Our long-term goal is to monitor VUR with combination of nontoxic optical contrast agents using PAC. Thus, if there is VUR in patients, we expect that the injected agent will flow back from the bladder to the kidney. Compared with x-ray cystography, PAC has a limited penetration depth. Thus, our main target for clinical PAC is for pediatric patients. Although the imaging speed of our current PAC system is relatively slow due to mechanical scanning, a real-time clinical ultrasound system can be easily adapted for PAC.21-27 Consequently, this approach potentially offers a portable and inexpensive means to access VUR monitoring, which is an additional benefit. Thus, we strongly believe that the feasibility of clinical translation of our application is very high. For future studies, before it is tested in the clinical setting, the PA VUR monitoring using optical absorbers will be investigated in a porcine model.
The authors have nothing to disclose.
This work was supported in part by a grant from the pilot studies program of the University at Buffalo Clinical and Translational Research Center and the Buffalo Translational Consortium, a grant from Roswell Park Alliance Foundation, startup funds from the University at Buffalo, IT Consilience Creative Program of MKE, and NIPA (C1515-1121-0003) and NRF grant of MEST (2012-0009249).
Name of Reagent/Material | Company | Catalog Number | Yorumlar |
Q-switched Nd:YAG laser | Continuum | SLII-10 | pump laser |
OPO laser | Continuum | Surelite OPO PLUS | tunable laser |
Prisms | Thorlabs | PS908 | light deliver |
Ultrasound transducer | Olympus NDT | V308 | 5 MHz |
Ultraoundpulser/receiver | Olympus NDT | 5072PR | amplifier |
Oscilloscope | Tektronix | TDS5054 | data acquisition |
Scanning stage | Danaher Dover | XY6060 | raster scanning |
Methylene blue | Sigma-Aldrich | M9140-25G | contrast agent |
Rats | Harlan | Spague-Dawley | animal subject |
Isoflourane vaporizer | Euthanex | EZ-155 | anesthesia |
Ultrasound gel | Sonotech | Clear Image singles | acoustic coupling |