JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

In JoVE (1)

Other Publications (14)

Articles by Allison Poussard in JoVE

 JoVE Immunology and Infection

In Vivo Imaging Systems (IVIS) Detection of a Neuro-Invasive Encephalitic Virus

1Experimental Pathology, University of Texas Medical Branch


JoVE 4429

Utilizing luciferase and in vivo imaging systems (IVIS) as a novel means to identify disease endpoints before clinical developments occur. IVIS has allowed us to visualize in real time the invasion of encephalitic viruses over multiple days, providing a more accurate disease model for future study. It has also allowed us to identify the potential protective features of antivirals and vaccines faster than currently utilized animal models. The capability to utilize individual animals over multiple time points ensures reduced animal requirements, costs, and overall morbidity to the animals utilized ensuring a more humane and more scientific means of disease study.

Other articles by Allison Poussard on PubMed

Controlled Trial of Immediate Endoluminal Closure of Colon Perforations in a Porcine Model by Use of a Novel Clip Device (with Videos)

Although endoluminal closure of a small perforation of the colon is technically feasible, the outcome of such a closure is unclear.

Endoluminal Clip Closure of a Circular Full-thickness Colon Resection in a Porcine Model (with Videos)

Linear perforations of the colon can be closed by the application of clips through a colonoscope. It is unclear whether circular perforations after full-thickness resection of the colon can be closed with clips.

Endoluminal Suturing May Overcome the Limitations of Clip Closure of a Gaping Wide Colon Perforation (with Videos)

It is unclear whether large gaping perforations of the colon can be closed by the endoluminal route.

Study of Full-thickness Endoluminal Segmental Resection of Colon in a Porcine Colon Model (with Videos)

Entrapment injury of the adjacent bowel is frequently encountered during full-thickness endoluminal colon suction-resection.

CD4+ T Cells Provide Protection Against Acute Lethal Encephalitis Caused by Venezuelan Equine Encephalitis Virus

Studying the mechanisms of host survival resulting from viral encephalitis is critical to the development of vaccines. Here we have shown in several independent studies that high dose treatment with neutralizing antibody prior to intranasal infection with Venezuelan equine encephalitis virus had an antiviral effect in the visceral organs and prolonged survival time of infected mice, even in the absence of alphabeta T cells. Nevertheless, antibody treatment did not prevent the development of lethal encephalitis. On the contrary, the adoptive transfer of primed CD4(+) T cells was necessary to prevent lethal encephalitis in mice lacking alphabeta T cell receptor.

Superior Efficacy of a Recombinant Flagellin:H5N1 HA Globular Head Vaccine is Determined by the Placement of the Globular Head Within Flagellin

Transmission of highly pathogenic avian influenza (HPAI) between birds and humans is an ongoing threat that holds potential for the emergence of a pandemic influenza strain. A major barrier to an effective vaccine against avian influenza has been the generally poor immunopotency of many of the HPAI strains coupled with the manufacturing constraints employing conventional methodologies. Fusion of flagellin, a toll-like receptor-5 ligand, to vaccine antigens has been shown to enhance the immune response to the fused antigen in preclinical studies. Here, we have evaluated the immunogenicity and efficacy of a panel of flagellin-based hemagglutinin (HA) globular head fusion vaccines in inbred mice. The HA globular head of these vaccines is derived from the A/Vietnam/1203/04 (VN04; H5N1) HA molecule. We find that replacement of domain D3 of flagellin with the VN04 HA globular head creates a highly effective vaccine that elicits protective HAI titers which protect mice against disease and death in a lethal challenge model.

TC83 Replicon Vectored Vaccine Provides Protection Against Junin Virus in Guinea Pigs

Junin virus (JUNV) is the etiological agent of the potentially lethal, reemerging human disease, Argentine hemorrhagic fever (AHF). The mechanism of the disease development is not well understood and no antiviral therapy is available. Candid 1, a live-attenuated vaccine, has been developed by the US Army and is being used in the endemic area to prevent AHF. This vaccine is only approved for use in Argentina. In this study we have used the alphavirus-based approach to engineer a replicon system based on a human (United States Food and Drug Administration Investigational New Drug status) vaccine TC83 that express heterologous viral antigens, such as glycoproteins (GPC) of Junin virus (JUNV). Preclinical studies testing the immunogenicity and efficacy of TC83/GPC were performed in guinea pigs. A single dose of the live-attenuated alphavirus based vaccine expressing only GPC was immunogenic and provided partial protection, while a double dose of the same vaccine provided a complete protection against JUNV. This is the first scientific report to our knowledge that the immune response against GPC alone is sufficient to prevent lethal disease against JUNV in an animal model.

Mice Lacking Alpha/beta and Gamma Interferon Receptors Are Susceptible to Junin Virus Infection

Junin virus (JUNV) causes a highly lethal human disease, Argentine hemorrhagic fever. Previous work has demonstrated the requirement for human transferrin receptor 1 for virus entry, and the absence of the receptor was proposed to be a major cause for the resistance of laboratory mice to JUNV infection. In this study, we present for the first time in vivo evidence that the disruption of interferon signaling is sufficient to generate a disease-susceptible mouse model for JUNV infection. After peripheral inoculation with virulent JUNV, adult mice lacking alpha/beta and gamma interferon receptors developed disseminated infection and severe disease.

Rescue from Cloned CDNAs and in Vivo Characterization of Recombinant Pathogenic Romero and Live-attenuated Candid #1 Strains of Junin Virus, the Causative Agent of Argentine Hemorrhagic Fever Disease

The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), which is associated with high morbidity and significant mortality. Several pathogenic strains of JUNV have been documented, and a highly attenuated vaccine strain (Candid #1) was generated and used to vaccinate the human population at risk. The identification and functional characterization of viral genetic determinants associated with AHF and Candid #1 attenuation would contribute to the elucidation of the mechanisms contributing to AHF and the development of better vaccines and therapeutics. To this end, we used reverse genetics to rescue the pathogenic Romero and the attenuated Candid #1 strains of JUNV from cloned cDNAs. Both recombinant Candid #1 (rCandid #1) and Romero (rRomero) had the same growth properties and phenotypic features in cultured cells and in vivo as their corresponding parental viruses. Infection with rRomero caused 100% lethality in guinea pigs, whereas rCandid #1 infection was asymptomatic and provided protection against a lethal challenge with Romero. Notably, Romero and Candid #1 trans-acting proteins, L and NP, required for virus RNA replication and gene expression were exchangeable in a minigenome rescue assay. These findings support the feasibility of studies aimed at determining the contribution of each viral gene to JUNV pathogenesis and attenuation. In addition, we rescued Candid #1 viruses with three segments that efficiently expressed foreign genes introduced into their genomes. This finding opens the way for the development of a safe multivalent arenavirus vaccine.

Rapid, Non-invasive Imaging of Alphaviral Brain Infection: Reducing Animal Numbers and Morbidity to Identify Efficacy of Potential Vaccines and Antivirals

Rapid and accurate identification of disease progression are key factors in testing novel vaccines and antivirals against encephalitic alphaviruses. Typical efficacy studies utilize a large number of animals and severe morbidity or mortality as an endpoint. New technologies provide a means to reduce and refine the animal use as proposed in Hume's 3Rs (replacement, reduction, refinement) described by Russel and Burch. In vivo imaging systems (IVIS) and bioluminescent enzyme technologies accomplish the reduction of animal requirements while shortening the experimental time and improving the accuracy in localizing active virus replication. In the case of murine models of viral encephalitis in which central nervous system (CNS) viral invasion occurs rapidly but the disease development is relatively slow, we visualized the initial brain infection and enhance the data collection process required for efficacy studies on antivirals or vaccines that are aimed at preventing brain infection. Accordingly, we infected mice through intranasal inoculation with the genetically modified pathogen, Venezuelan equine encephalitis, which expresses a luciferase gene. In this study, we were able to identify the invasion of the CNS at least 3 days before any clinical signs of disease, allowing for reduction of animal morbidity providing a humane means of disease and vaccine research while obtaining scientific data accurately and more rapidly. Based on our data from the imaging model, we confirmed the usefulness of this technology in preclinical research by demonstrating the efficacy of Ampligen, a TLR-3 agonist, in preventing CNS invasion.

Functional Interferon System is Required for Clearance of Lassa Virus

Lassa virus (LASV) is the causative agent of Lassa hemorrhagic fever (LF) in humans, a deadly disease endemic to West Africa that results in 5,000 to 10,000 deaths annually. Here we present results demonstrating that functional type I and type II interferon (IFN) signaling is required for efficient control of LASV dissemination and clearance.

Chemotactic and Inflammatory Responses in the Liver and Brain Are Associated with Pathogenesis of Rift Valley Fever Virus Infection in the Mouse

Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the initial hepatitis is neurologic in nature which is supported by observations of human disease and the BALB/c mouse model.

Natural Killer Cell Mediated Pathogenesis Determines Outcome of Central Nervous System Infection with Venezuelan Equine Encephalitis Virus in C3H/HeN Mice

TC83 is a human vaccine with investigational new drug status and is used as a prototype Venezuelan equine encephalitis virus for pathogenesis and antiviral research. Differing from other experimental models, the virus causes high titer infection in the brain and 90-100% mortality in the C3H/HeN murine model. To better characterize the susceptibility to disease development in C3H/HeN mice, we have analyzed the gene transcriptomes and cytokine production in the brains of infected mice. Our analysis indicated the potential importance of natural killer cells in the encephalitic disease development. This paper describes for the first time a pathogenic role for natural killer cells in VEEV encephalitis.

Junín Virus Infection Activates the Type I Interferon Pathway in a RIG-I-dependent Manner

Junín virus (JUNV), an arenavirus, is the causative agent of Argentine hemorrhagic fever, an infectious human disease with 15-30% case fatality. The pathogenesis of AHF is still not well understood. Elevated levels of interferon and cytokines are reported in AHF patients, which might be correlated to the severity of the disease. However the innate immune response to JUNV infection has not been well evaluated. Previous studies have suggested that the virulent strain of JUNV does not induce IFN in human macrophages and monocytes, whereas the attenuated strain of JUNV was found to induce IFN response in murine macrophages via the TLR-2 signaling pathway. In this study, we investigated the interaction between JUNV and IFN pathway in human epithelial cells highly permissive to JUNV infection. We have determined the expression pattern of interferon-stimulated genes (ISGs) and IFN-β at both mRNA and protein levels during JUNV infection. Our results clearly indicate that JUNV infection activates the type I IFN response. STAT1 phosphorylation, a downstream marker of activation of IFN signaling pathway, was readily detected in JUNV infected IFN-competent cells. Our studies also demonstrated for the first time that RIG-I was required for IFN production during JUNV infection. IFN activation was detected during infection by either the virulent or attenuated vaccine strain of JUNV. Curiously, both virus strains were relatively insensitive to human IFN treatment. Our studies collectively indicated that JUNV infection could induce host type I IFN response and provided new insights into the interaction between JUNV and host innate immune system, which might be important in future studies on vaccine development and antiviral treatment.

Waiting
simple hit counter