JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

In JoVE (1)

Other Publications (22)

Articles by David M. Langenau in JoVE

 JoVE Biology

Quantifying the Frequency of Tumor-propagating Cells Using Limiting Dilution Cell Transplantation in Syngeneic Zebrafish

1Department of Molecular Pathology, Massachusetts General Hospital, Harvard Medical School, 2Department of Molecular Pathology, Massachusetts General Hospital Cancer Center, Harvard Stem Cell Institute


JoVE 2790

Limiting dilution cell transplantation assays are used to determine the frequency of tumor-propagating cells. This protocol describes a method for generating syngeneic zebrafish that develop fluorescently-labeled leukemia and details how to isolate and transplant these leukemia cells at limiting dilution into the peritoneal cavity of adult zebrafish.

Other articles by David M. Langenau on PubMed

Myc-induced T Cell Leukemia in Transgenic Zebrafish

The zebrafish is an attractive model organism for studying cancer development because of its genetic accessibility. Here we describe the induction of clonally derived T cell acute lymphoblastic leukemia in transgenic zebrafish expressing mouse c-myc under control of the zebrafish Rag2 promoter. Visualization of leukemic cells expressing a chimeric transgene encoding Myc fused to green fluorescent protein (GFP) revealed that leukemias arose in the thymus, spread locally into gill arches and retro-orbital soft tissue, and then disseminated into skeletal muscle and abdominal organs. Leukemic cells homed back to the thymus in irradiated fish transplanted with GFP-labeled leukemic lymphoblasts. This transgenic model provides a platform for drug screens and for genetic screens aimed at identifying mutations that suppress or enhance c-myc- induced carcinogenesis.

Knockdown of Zebrafish Fancd2 Causes Developmental Abnormalities Via P53-dependent Apoptosis

Mechanisms underlying the multiple developmental defects observed in Fanconi anemia (FA) patients are not well defined. We have identified the zebrafish homolog of human FANCD2, which encodes a nuclear effector protein that is monoubiquitinated in response to DNA damage, targeting it to nuclear foci where it preserves chromosomal integrity. Fancd2-deficient zebrafish embryos develop defects similar to those found in children with FA, including shortened body length, microcephaly, and microophthalmia, which are due to extensive cellular apoptosis. Developmental defects and increased apoptosis in Fancd2-deficient zebrafish were corrected by injection of human FANCD2 or zebrafish bcl2 mRNA, or by knockdown of p53, indicating that in the absence of Fancd2, developing tissues spontaneously undergo p53-dependent apoptosis. Thus, Fancd2 is essential during embryogenesis to prevent inappropriate apoptosis in neural cells and other tissues undergoing high levels of proliferative expansion, implicating this mechanism in the congenital abnormalities observed in human infants with FA.

The Use of Zebrafish to Understand Immunity

For decades immunologists have relied heavily on the mouse model for their experimental designs. With the realization of the important role innate immunity plays in orchestrating immune responses, invertebrates such as worms and flies have been added to the repertoire. Here, we discuss the advent of the zebrafish as a powerful vertebrate model organism that promises to positively impact immunologic research.

In Vivo Tracking of T Cell Development, Ablation, and Engraftment in Transgenic Zebrafish

Transgenic zebrafish that express GFP under control of the T cell-specific tyrosine kinase (lck) promoter were used to analyze critical aspects of the immune system, including patterns of T cell development and T cell homing after transplant. GFP-labeled T cells could be ablated in larvae by either irradiation or dexamethasone added to the water, illustrating that T cells have evolutionarily conserved responses to chemical and radiation ablation. In transplant experiments, thymocytes from lck-GFP fish repopulated the thymus of irradiated wild-type fish only transiently, suggesting that the thymus contains only short-term thymic repopulating cells. By contrast, whole kidney marrow permanently reconstituted the T lymphoid compartment of irradiated wild-type fish, suggesting that long-term thymic repopulating cells reside in the kidney.

Effects of Lethal Irradiation in Zebrafish and Rescue by Hematopoietic Cell Transplantation

The study of hematopoiesis has been greatly facilitated by transplantation of blood cell populations into recipient animals. Efficient engraftment of donor cells generally requires ablation of the host hematopoietic system. The zebrafish has recently emerged as a developmental and genetic system to study hematopoiesis. To enable the study of hematopoietic stem cell (HSC) biology, immune cell function, and leukemogenesis in zebrafish, we have developed hematopoietic cell transplantation (HCT) into adult recipient animals conditioned by gamma irradiation. Dose-response experiments showed that the minimum lethal dose (MLD) of 40 Gy led to the specific ablation of hematolymphoid cells and death by 14 days after irradiation. Sublethal irradiation doses of 20 Gy predominantly ablated lymphocytes and permitted transplantation of a lethal T-cell leukemia. Finally, transplantation of hematopoietic cells carrying transgenes yielding red fluorescent erythrocytes and green fluorescent leukocytes showed that HCT is sufficient to rescue the MLD, that recipient hematolymphoid tissues were repopulated by donor-derived cells, and that donor blood cell lineages can be independently visualized in living recipients. Together, these results establish transplantation assays to test for HSC function and oncogenic transformation in zebrafish.

Suppression of Apoptosis by Bcl-2 Overexpression in Lymphoid Cells of Transgenic Zebrafish

The zebrafish is an attractive vertebrate model for genetic studies of development, apoptosis, and cancer. Here we describe a transgenic zebrafish line in which T- and B-lymphoid cells express a fusion transgene that encodes the zebrafish bcl-2 protein fused to the enhanced green fluorescence protein (EGFP). Targeting EGFP-bcl-2 to the developing thymocytes of transgenic fish resulted in a 2.5-fold increase in thymocyte numbers and a 1.8-fold increase in GFP-labeled B cells in the kidney marrow. Fluorescent microscopic analysis of living rag2-EGFP-bcl-2 transgenic fish showed that their thymocytes were resistant to irradiation- and dexamethasone-induced apoptosis, when compared with control rag2-GFP transgenic zebrafish. To test the ability of bcl-2 to block irradiation-induced apoptosis in malignant cells, we compared the responsiveness of Myc-induced leukemias with and without EGFP-bcl-2 expression in living transgenic zebrafish. T-cell leukemias induced by the rag2-EGFP-Myc transgene were ablated by irradiation, whereas leukemias in double transgenic fish expressing both Myc and EGFP-bcl-2 were resistant to irradiation-induced apoptotic cell death. The forward genetic capacity of the zebrafish model system and the ability to monitor GFP-positive thymocytes in vivo make this an ideal transgenic line for modifier screens designed to identify genetic mutations or small molecules that modify bcl-2-mediated antiapoptotic pathways.

The Zebrafish: a New Model of T-cell and Thymic Development

T-cell and thymic development are processes that have been highly conserved throughout vertebrate evolution. Mammals, birds, reptiles and fish share common molecular signalling pathways that regulate the development of the adaptive immune system. This Review article focuses on defining the similarities and differences between zebrafish and mammalian T-cell immunobiology, and it highlights the advantages of using the zebrafish as a genetic model to uncover mutations that affect T-cell and thymic development. Finally, we summarize the use of the zebrafish as a new model for assessing stem-cell function and for drug discovery.

Cre/lox-regulated Transgenic Zebrafish Model with Conditional Myc-induced T Cell Acute Lymphoblastic Leukemia

We have created a stable transgenic rag2-EGFP-mMyc zebrafish line that develops GFP-labeled T cell acute lymphoblastic leukemia (T-ALL), allowing visualization of the onset and spread of this disease. Here, we show that leukemias from this transgenic line are highly penetrant and render animals moribund by 80.7 +/- 17.6 days of life (+/-1 SD, range = 50-158 days). These T cell leukemias are clonally aneuploid, can be transplanted into irradiated recipient fish, and express the zebrafish orthologues of the human T-ALL oncogenes tal1/scl and lmo2, thus providing an animal model for the most prevalent molecular subgroup of human T-ALL. Because T-ALL develops very rapidly in rag2-EGFP-mMyc transgenic fish (in which "mMyc" represents mouse c-Myc), this line can only be maintained by in vitro fertilization. Thus, we have created a conditional transgene in which the EGFP-mMyc oncogene is preceded by a loxed dsRED2 gene and have generated stable rag2-loxP-dsRED2-loxP-EGFP-mMyc transgenic zebrafish lines, which have red fluorescent thymocytes and do not develop leukemia. Transgenic progeny from one of these lines can be induced to develop T-ALL by injecting Cre RNA into one-cell-stage embryos, demonstrating the utility of the Cre/lox system in the zebrafish and providing an essential step in preparing this model for chemical and genetic screens designed to identify modifiers of Myc-induced T-ALL.

Effects of RAS on the Genesis of Embryonal Rhabdomyosarcoma

Embryonal rhabdomyosarcoma (ERMS) is a devastating cancer with specific features of muscle differentiation that can result from mutational activation of RAS family members. However, to date, RAS pathway activation has not been reported in a majority of ERMS patients. Here, we have created a zebrafish model of RAS-induced ERMS, in which animals develop externally visible tumors by 10 d of life. Microarray analysis and cross-species comparisons identified two conserved gene signatures found in both zebrafish and human ERMS, one associated with tumor-specific and tissue-restricted gene expression in rhabdomyosarcoma and a second comprising a novel RAS-induced gene signature. Remarkably, our analysis uncovered that RAS pathway activation is exceedingly common in human RMS. We also created a new transgenic coinjection methodology to fluorescently label distinct subpopulations of tumor cells based on muscle differentiation status. In conjunction with fluorescent activated cell sorting, cell transplantation, and limiting dilution analysis, we were able to identify the cancer stem cell in zebrafish ERMS. When coupled with gene expression studies of this cell population, we propose that the zebrafish RMS cancer stem cell shares similar self-renewal programs as those found in activated satellite cells.

Heat Shock-inducible Cre/Lox Approaches to Induce Diverse Types of Tumors and Hyperplasia in Transgenic Zebrafish

RAS family members are among the most frequently mutated oncogenes in human cancers. Given the utility of zebrafish in both chemical and genetic screens, developing RAS-induced cancer models will make large-scale screens possible to understand further the molecular mechanisms underlying malignancy. We developed a heat shock-inducible Cre/Lox-mediated transgenic approach in which activated human kRASG12D can be conditionally induced within transgenic animals by heat shock treatment. Specifically, double transgenic fish Tg(B-actin-LoxP-EGFP-LoxP-kRASG12D; hsp70-Cre) developed four types of tumors and hyperplasia after heat shock of whole zebrafish embryos, including rhabdomyosarcoma, myeloproliferative disorder, intestinal hyperplasia, and malignant peripheral nerve sheath tumor. Using ex vivo heat shock and transplantation of whole kidney marrow cells from double transgenic animals, we were able to generate specifically kRASG12D-induced myeloproliferative disorder in recipient fish. This heat shock-inducible recombination approach allowed for the generation of multiple types of RAS-induced tumors and hyperplasia without characterizing tissue-specific promoters. Moreover, these tumors and hyperplasia closely resemble human diseases at both the morphologic and molecular levels.

Heat-shock Induction of T-cell Lymphoma/leukaemia in Conditional Cre/lox-regulated Transgenic Zebrafish

The zebrafish is an ideal vertebrate model system to investigate the complex genetic basis of cancer because it has the capacity for in vivo tumour-cell imaging and forward genetic screens, and the molecular mechanisms regulating malignancy are remarkably conserved when compared with human. Our laboratory has previously generated transgenic zebrafish models that overexpress the mouse c-Myc gene fused to enhanced green fluorescent protein (EGFP) and develop T-cell acute lymphoblastic leukaemia (T-ALL) that recapitulates the human disease both molecularly and pathologically. Our previous models have been limited by disease onset prior to sexual maturity and by the low disease penetrance when conditional transgenic embryos are injected with Cre RNA. Here, we report a novel system in which compound transgenic fish expressed both Cre controlled by the heat-shock promoter and a rag2-promoter-regulated lox-dsRED2-lox-EGFP-mMyc cassette rag2-LDL-EMyc in developing T cells. After heat-shock treatment at 3 d postfertilisation (dpf) for 45 min at 37 degrees C, 81% of compound transgenic fish developed T-lymphoblastic lymphoma (T-LBL, mean latency 120 +/- 43 (standard deviation) days of life), which rapidly progressed to T-ALL. Heat-shock-regulated transgenic technology in zebrafish provides the missing link necessary to exploit the powerful genetic capacity of this organism to probe the multi-step molecular pathogenesis of leukaemia.

Generation and Characterization of Transgenic Zebrafish Lines Using Different Ubiquitous Promoters

Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 alpha promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues, particularly the central nervous system. To overcome this limitation, we cloned the promoters of four zebrafish genes that likely are transcribed ubiquitously throughout development and into the adult. These four genes are the TATA box binding protein gene, the taube nuss-like gene, the eukaryotic elongation factor 1-gamma gene, and the beta-actin-1 gene. We PCR amplified approximately 2.5 kb upstream of the putative translational start site of each gene and cloned each into a Tol2 expression vector that contains the EGFP reporter transgene. We used these four Tol2 vectors to independently generate stable transgenic fish lines for analysis of transgene expression during development and in the adult. We demonstrated that all four promoters drive a very broad pattern of EGFP expression throughout development and the adult. Using the retina as a well-characterized component of the CNS, all four promoters appeared to drive EGFP expression in all neuronal and non-neuronal cells of the adult retina. In contrast, the h2afv promoter failed to express EGFP in the adult retina. When we examined EGFP expression in the various cells of the blood cell lineage, we observed that all four promoters exhibited a more heterogenous expression pattern than either the XlEef1a1 or h2afv promoters. While these four ubiquitous promoters did not express EGFP in all the adult blood cells, they did express EGFP throughout the CNS and in broader expression patterns in the adult than either the XlEef1a1 or h2afv promoters. For these reasons, these four promoters will be valuable tools for expressing transgenes in adult zebrafish.

Construction and Application of a Zebrafish Array Comparative Genomic Hybridization Platform

The zebrafish is emerging as a prominent model system for studying the genetics of human development and disease. Genetic alterations that underlie each mutant model can exist in the form of single base changes, balanced chromosomal rearrangements, or genetic imbalances. To detect genetic imbalances in an unbiased genome-wide fashion, array comparative genomic hybridization (CGH) can be used. We have developed a 5-Mb resolution array CGH platform specifically for the zebrafish. This platform contains 286 bacterial artificial chromosome (BAC) clones, enriched for orthologous sequences of human oncogenes and tumor suppressor genes. Each BAC clone has been end-sequenced and cytogenetically assigned to a specific location within the zebrafish genome, allowing for ease of integration of array CGH data with the current version of the genome assembly. This platform has been applied to three zebrafish cancer models. Significant genomic imbalances were detected in each model, identifying different regions that may potentially play a role in tumorigenesis. Hence, this platform should be a useful resource for genetic dissection of additional zebrafish developmental and disease models as well as a benchmark for future array CGH platform development.

Zebrafish As a Model for Cancer Self-renewal

Self-renewal is the process by which normal stem cells and cancer cells make more of themselves. In cancer, this process is ultimately responsible for the infinite replicative potential of malignant cells and is likely found in residual cell populations that evade conventional therapy. Two intrinsically opposing hypotheses have emerged to explain how self-renewal occurs in cancer. The cancer stem cell hypothesis states that self-renewal is confined to a discrete subpopulation of malignant cells, whereas the stochastic model suggests that all tumor cells have the potential to self-renew. Presently, the gold standard for measuring cancer self-renewal is limiting dilution cell transplantation into immune-matched or immune-deficient animals. From these experiments, tumor-initiating frequency can be calculated based on the number of animals that engraft disease following transplantation of various doses of tumor cells. Here, we describe how self-renewal assays are performed, summarize the current experimental models that support the cancer stem cell and stochastic models of cancer self-renewal, and enumerate how the zebrafish can be used to uncover important pathways in cancer self-renewal.

High-throughput Cell Transplantation Establishes That Tumor-initiating Cells Are Abundant in Zebrafish T-cell Acute Lymphoblastic Leukemia

Self-renewal is a feature of cancer and can be assessed by cell transplantation into immune-compromised or immune-matched animals. However, studies in zebrafish have been severely limited by lack of these reagents. Here, Myc-induced T-cell acute lymphoblastic leukemias (T-ALLs) have been made in syngeneic, clonal zebrafish and can be transplanted into sibling animals without the need for immune suppression. These studies show that self-renewing cells are abundant in T-ALL and comprise 0.1% to 15.9% of the T-ALL mass. Large-scale single-cell transplantation experiments established that T-ALLs can be initiated from a single cell and that leukemias exhibit wide differences in tumor-initiating potential. T-ALLs also can be introduced into clonal-outcrossed animals, and T-ALLs arising in mixed genetic backgrounds can be transplanted into clonal recipients without the need for major histocompatibility complex matching. Finally, high-throughput imaging methods are described that allow large numbers of fluorescent transgenic animals to be imaged simultaneously, facilitating the rapid screening of engrafted animals. Our experiments highlight the large numbers of zebrafish that can be experimentally assessed by cell transplantation and establish new high-throughput methods to functionally interrogate gene pathways involved in cancer self-renewal.

AMAZe-ing Tools for Mosaic Analysis in Zebrafish

T-lymphoblastic Lymphoma Cells Express High Levels of BCL2, S1P1, and ICAM1, Leading to a Blockade of Tumor Cell Intravasation

The molecular events underlying the progression of T-lymphoblastic lymphoma (T-LBL) to acute T-lymphoblastic leukemia (T-ALL) remain elusive. In our zebrafish model, concomitant overexpression of bcl-2 with Myc accelerated T-LBL onset while inhibiting progression to T-ALL. The T-LBL cells failed to invade the vasculature and showed evidence of increased homotypic cell-cell adhesion and autophagy. Further analysis using clinical biopsy specimens revealed autophagy and increased levels of BCL2, S1P1, and ICAM1 in human T-LBL compared with T-ALL. Inhibition of S1P1 signaling in T-LBL cells led to decreased homotypic adhesion in vitro and increased tumor cell intravasation in vivo. Thus, blockade of intravasation and hematologic dissemination in T-LBL is due to elevated S1P1 signaling, increased expression of ICAM1, and augmented homotypic cell-cell adhesion.

Selection-free Zinc-finger-nuclease Engineering by Context-dependent Assembly (CoDA)

Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe context-dependent assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA-generated ZFNs, we rapidly altered 20 genes in Danio rerio, Arabidopsis thaliana and Glycine max. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multigene pathways or genome-wide alterations.

High-throughput Imaging of Adult Fluorescent Zebrafish with an LED Fluorescence Macroscope

Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis.

Zebrafish Models of Rhabdomyosarcoma

Rhabdomyosarcoma (RMS), an aggressive malignant neoplasm that shows features of skeletal muscle, is the most common soft tissue tumor of childhood. In children, the major subtypes are embryonal and alveolar. Although localized disease responds to a multimodal treatment, the prognosis for patients with high-risk features and metastasis remains dismal. Several in vivo models of RMS have been developed in mouse, human xenografts, zebrafish, and Drosophila to better understand the underlying mechanisms governing malignancy. The findings so far have indicated the potential role of skeletal muscle precursor cells in malignant transformation. To better understand histogenesis and different aspects of tumorigenesis in RMS, we have previously developed a robust zebrafish model of kRAS-induced RMS, which shares morphologic and immunophenotypic features with the human counterpart. Cross-species mircroarray comparisons confirm that conserved genetic pathways drive RMS growth. The ease for ex vivo manipulation allows the development of different transgenic and co-injection strategies to induce tumor formation in zebrafish. In contrast to other vertebrate model systems, the tumor onset in zebrafish is short, allowing for efficient study of different tumor processes including tumor growth, self-renewal, and maintenance.

Fluorescent Imaging of Cancer in Zebrafish

Zebrafish are an ideal model organism to research cancer. Zebrafish embryos and larvae are optically translucent, which has made imaging multiple processes in development and disease possible. When coupled with fluorescent imaging techniques, zebrafish are fast becoming a model of choice for following tumor formation. This is highlighted by recent studies using fluorescent proteins to image xenograft transplantation, neovascularization, growth responses to drug treatments, and self-renewal. Fluorescent labeled tumors can be generated in zebrafish by multiple methods including chemical mutagenesis, oncogene expression by mosaic or stable transgenesis, or genetic mutations that are predisposing to cancer. In this chapter, we highlight the studies that have employed fluorescence to follow critical aspects of tumorigenesis, with particular focus on providing methods for labeling, isolating, transplanting, and imaging fluorescently labeled tumors in zebrafish.

Sarcomas Induced in Discrete Subsets of Prospectively Isolated Skeletal Muscle Cells

Soft-tissue sarcomas are heterogeneous cancers that can present with tissue-specific differentiation markers. To examine the cellular basis for this histopathological variation and to identify sarcoma-relevant molecular pathways, we generated a chimeric mouse model in which sarcoma-associated genetic lesions can be introduced into discrete, muscle-resident myogenic and mesenchymal cell lineages. Expression of Kirsten rat sarcoma viral oncogene [Kras(G12V)] and disruption of cyclin-dependent kinase inhibitor 2A (CDKN2A; p16p19) in prospectively isolated satellite cells gave rise to pleomorphic rhabdomyosarcomas (MyoD-, Myogenin- and Desmin-positive), whereas introduction of the same oncogenetic hits in nonmyogenic progenitors induced pleomorphic sarcomas lacking myogenic features. Transcriptional profiling demonstrated that myogenic and nonmyogenic Kras; p16p19(null) sarcomas recapitulate gene-expression signatures of human rhabdomyosarcomas and identified a cluster of genes that is concordantly up-regulated in both mouse and human sarcomas. This cluster includes genes associated with Ras and mechanistic target of rapamycin (mTOR) signaling, a finding consistent with activation of the Ras and mTOR pathways both in Kras; p16p19(null) sarcomas and in 26-50% of human rhabdomyosarcomas surveyed. Moreover, chemical inhibition of Ras or mTOR signaling arrested the growth of mouse Kras; p16p19(null) sarcomas and of human rhabdomyosarcoma cells in vitro and in vivo. Taken together, these data demonstrate the critical importance of lineage commitment within the tumor cell-of-origin in determining sarcoma histotype and introduce an experimental platform for rapid dissection of sarcoma-relevant cellular and molecular events.

Waiting
simple hit counter