JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

In JoVE (1)

Other Publications (54)

Articles by Didier Lereclus in JoVE

 JoVE Immunology and Infection

The Insect Galleria mellonella as a Powerful Infection Model to Investigate Bacterial Pathogenesis

1INRA, Micalis UMR1319, France


JoVE 4392

Oral and intra haemocolic infection of larvae of the greater wax moth Galleria mellonella is described. This insect can be used to study virulence factors of entomopathogenic as well as mammalian opportunistic bacteria. Rearing of the insects, methods of infection and examples of in vivo analysis are described.

Other articles by Didier Lereclus on PubMed

Genetic Differentiation Between Sympatric Populations of Bacillus Cereus and Bacillus Thuringiensis

Little is known about genetic exchanges in natural populations of bacteria of the spore-forming Bacillus cereus group, because no population genetics studies have been performed with local sympatric populations. We isolated strains of Bacillus thuringiensis and B. cereus from small samples of soil collected at the same time from two separate geographical sites, one within the forest and the other at the edge of the forest. A total of 100 B. cereus and 98 B. thuringiensis strains were isolated and characterized by electrophoresis to determine allelic composition at nine enzymatic loci. We observed genetic differentiation between populations of B. cereus and B. thuringiensis. Populations of a given Bacillus species--B. thuringiensis or B. cereus--were genetically more similar to each other than to populations of the other Bacillus species. Hemolytic activity provided further evidence of this genetic divergence, which remained evident even if putative clones were removed from the data set. Our results suggest that the rate of gene flow was higher between strains of the same species, but that exchanges between B. cereus and B. thuringiensis were nonetheless possible. Linkage disequilibrium analysis revealed sufficient recombination for B. cereus populations to be considered panmictic units. In B. thuringiensis, the balance between clonal proliferation and recombination seemed to depend on location. Overall, our data indicate that it is not important for risk assessment purposes to determine whether B. cereus and B. thuringiensis belong to a single or two species. Assessment of the biosafety of pest control based on B. thuringiensis requires evaluation of the extent of genetic exchange between strains in realistic natural conditions.

The InhA2 Metalloprotease of Bacillus Thuringiensis Strain 407 is Required for Pathogenicity in Insects Infected Via the Oral Route

The entomopathogenic bacterium Bacillus thuringiensis is known to secrete a zinc metalloprotease (InhA) that specifically cleaves antibacterial peptides produced by insect hosts. We identified a second copy of the inhA gene, named inhA2, in B. thuringiensis strain 407 Cry(-). The inhA2 gene encodes a putative polypeptide showing 66.2% overall identity with the InhA protein and harboring the zinc-binding domain (HEXXH), which is characteristic of the zinc-requiring metalloproteases. We used a transcriptional inhA2'-lacZ fusion to show that inhA2 expression is induced at the onset of the stationary phase and is overexpressed in a Spo0A minus background. The presence of a reverse Spo0A box in the promoter region of inhA2 suggests that Spo0A directly regulates the transcription of inhA2. To determine the role of the InhA and InhA2 metalloproteases in pathogenesis, we used allelic exchange to isolate single and double mutant strains for the two genes. Spores and vegetative cells of the mutant strains were as virulent as those of the parental strain in immunized Bombyx mori larvae infected by the intrahemocoelic route. Exponential phase cells of all the strains displayed the same in vitro potential for colonizing the vaccinated hemocoel. We investigated the synergistic effect of the mutant strain spores on the toxicity of Cry1C proteins against Galleria mellonella larvae infected via the oral pathway. The spores of DeltainhA2 mutant strain were ineffective in providing synergism whereas those of the DeltainhA mutant strain were not. These results indicate that the B. thuringiensis InhA2 zinc metalloprotease has a vital role in virulence when the host is infected via the oral route.

Two-dimensional Electrophoresis Analysis of the Extracellular Proteome of Bacillus Cereus Reveals the Importance of the PlcR Regulon

Many virulence factors are secreted by the gram-positive, spore forming bacterium Bacillus cereus. Most of them are regulated by the transcriptional activator, PlcR, which is maximally expressed at the beginning of the stationary phase. We used a proteomic approach to study the impact of the PlcR regulon on the secreted proteins of B. cereus, by comparing the extracellular proteomes of strains ATCC 14579 and ATCC 14579 Delta plcR, in which plcR has been disrupted. Our study indicated that, quantitatively, most of the proteins secreted at the onset of the stationary phase are putative virulence factors, all of which are regulated, directly or indirectly, by PlcR. The inactivation of plcR abolished the secretion of some of these virulence factors, and strongly decreased that of others. The genes encoding proteins that are not secreted in the DeltaplcR mutant possessed a regulatory sequence, the PlcR box, upstream from their coding sequence. These proteins include collagenase, phospholipases, haemolysins, proteases and enterotoxins. Proteins for which the secretion was strongly decreased, but not abolished, in the DeltaplcR mutant did not display the PlcR box upstream from their genes. These proteins include flagellins and InhA2. InhA2 is a homologue of InhA, a Bacillus thuringiensis metalloprotease that specifically degrades antibacterial peptides. The mechanism by which PlcR affects the production of flagellins and InhA2 is not known.

A Cell-cell Signaling Peptide Activates the PlcR Virulence Regulon in Bacteria of the Bacillus Cereus Group

PlcR is a pleiotropic regulator that activates the expression of genes encoding various virulence factors, such as phospholipases C, proteases and hemolysins, in Bacillus thuringiensis and Bacillus cereus. Here we show that the activation mechanism is under the control of a small peptide: PapR. The papR gene belongs to the PlcR regulon and is located 70 bp downstream from plcR. It encodes a 48-amino-acid peptide. Disruption of the papR gene abolished expression of the PlcR regulon, resulting in a large decrease in hemolysis and virulence in insect larvae. We demonstrated that the PapR polypeptide was secreted, then reimported via the oligopeptide permease Opp. Once inside the cell, a processed form of PapR, presumably a pentapeptide, activated the PlcR regulon by allowing PlcR to bind to its DNA target. This activating mechanism was found to be strain specific, with this specificity determined by the first residue of the penta peptide.

Contribution of Membrane-damaging Toxins to Bacillus Endophthalmitis Pathogenesis

Membrane-damaging toxins are thought to be responsible for the explosive clinical course of Bacillus endophthalmitis. This study analyzed the contribution of phosphatidylinositol-specific phospholipase C (PI-PLC) and phosphatidylcholine-specific phospholipase C (PC-PLC) to the pathogenesis of experimental Bacillus endophthalmitis. Isogenic mutants were constructed by insertion of lacZ into Bacillus thuringiensis genes encoding PI-PLC (plcA) and PC-PLC (plcB). Rabbit eyes were injected intravitreally with 2 log(10) CFU of strain BT407 (wild type), the PI-PLC mutant (BTplcA::lacZ), or the PC-PLC mutant (BTplcB::lacZ). The rates of decrease in retinal responses of eyes infected with the isogenic mutants were similar to that of wild type, with all infections resulting in elimination of retinal function by 18 h. Strain BT407 caused a significant increase in the latency of retinal responses at 6 h, but strains BTplcA::lacZ and BTplcB::lacZ did not. All strains elicited significant inflammatory cell influx into the anterior chamber by 12 h. Histologically, eyes infected with each strain were indistinguishable throughout the infection course. In this model, neither PI-PLC nor PC-PLC had an effect on the course or severity of experimental Bacillus endophthalmitis. Alterations in retinal responses early in infection may mark the beginnings of specific photoreceptor or glial cell dysfunction.

Distinct ClpP Genes Control Specific Adaptive Responses in Bacillus Thuringiensis

ClpP and ClpC are subunits of the Clp ATP-dependent protease, which is ubiquitous among prokaryotic and eukaryotic organisms. The role of these proteins in stress tolerance, stationary-phase adaptive responses, and virulence in many bacterial species has been demonstrated. Based on the amino acid sequences of the Bacillus subtilis clpC and clpP genes, we identified one clpC gene and two clpP genes (designated clpP1 and clpP2) in Bacillus thuringiensis. Predicted proteins ClpP1 and ClpP2 have approximately 88 and 67% amino acid sequence identity with ClpP of B. subtilis, respectively. Inactivation of clpC in B. thuringiensis impaired sporulation efficiency. The clpP1 and clpP2 mutants were both slightly susceptible to salt stress, whereas disruption of clpP2 negatively affected sporulation and abolished motility. Virulence of the clp mutants was assessed by injecting bacteria into the hemocoel of Bombyx mori larvae. The clpP1 mutant displayed attenuated virulence, which appeared to be related to its inability to grow at low temperature (25 degrees C), suggesting an essential role for ClpP1 in tolerance of low temperature. Microscopic examination of clpP1 mutant cells grown at 25 degrees C showed altered bacterial division, with cells remaining attached after septum formation. Analysis of lacZ transcriptional fusions showed that clpP1 was expressed at 25 and 37 degrees C during the entire growth cycle. In contrast, clpP2 was expressed at 37 degrees C but not at 25 degrees C, suggesting that ClpP2 cannot compensate for the absence of ClpP1 in the clpP1 mutant cells at low temperature. Our study demonstrates that ClpP1 and ClpP2 control distinct cellular regulatory pathways in B. thuringiensis.

An ABC Transporter from Bacillus Thuringiensis is Essential for Beta-exotoxin I Production

beta-Exotoxin I is a nonspecific insecticidal metabolite secreted by some Bacillus thuringiensis strains. Several studies of B. thuringiensis strains that have lost the capacity to produce beta-exotoxin I have suggested that there is a strong correlation between high levels of beta-exotoxin I production and the ability to synthesize crystal proteins. In this study, we showed that a mutant strain, B. thuringiensis 407-1(Cry(-))(Pig(+)), with no crystal gene, produced considerable amounts of beta-exotoxin I together with a soluble brown melanin pigment. Therefore, beta-exotoxin I production can take place after a strain has lost the plasmids bearing the cry genes, which suggests that these curable plasmids probably contain determinants involved in the regulation of beta-exotoxin I production. Using a mini-Tn10 transposon, we constructed a library of strain 407-1(Cry(-))(Pig(+)) mutants. We screened for nonpigmented mutants with impaired beta-exotoxin I production and identified a genetic locus harboring two genes (berA and berB) essential for beta-exotoxin I production. The deduced amino acid sequence of the berA gene displayed significant similarity to the ATP-binding domains of the DRI (drug resistance and immunity) family of ATP-binding cassette (ABC) proteins involved in drug resistance and immunity to bacteriocins and lantibiotics. The berB gene encodes a protein with six putative transmembrane helices, which probably constitutes the integral membrane component of the transporter. The demonstration that berAB is required for beta-exotoxin I production and/or resistance in B. thuringiensis adds an adenine nucleotide analog to the wide range of substrates of the superfamily of ABC proteins. We suggest that berAB confers beta-exotoxin I immunity in B. thuringiensis, through active efflux of the molecule.

Requirement of FlhA for Swarming Differentiation, Flagellin Export, and Secretion of Virulence-associated Proteins in Bacillus Thuringiensis

Bacillus thuringiensis is being used worldwide as a biopesticide, although increasing evidence suggests that it is emerging as an opportunistic human pathogen. While phospholipases, hemolysins, and enterotoxins are claimed to be responsible for B. thuringiensis virulence, there is no direct evidence to indicate that the flagellum-driven motility plays a role in parasite-host interactions. This report describes the characterization of a mini-Tn10 mutant of B. thuringiensis that is defective in flagellum filament assembly and in swimming and swarming motility as well as in the production of hemolysin BL and phosphatidylcholine-preferring phospholipase C. The mutant strain was determined to carry the transposon insertion in flhA, a flagellar class II gene encoding a protein of the flagellar type III export apparatus. Interestingly, the flhA mutant of B. thuringiensis synthesized flagellin but was impaired in flagellin export. Moreover, a protein similar to the anti-sigma factor FlgM that acts in regulating flagellar class III gene transcription was not detectable in B. thuringiensis, thus suggesting that the flagellar gene expression hierarchy of B. thuringiensis differs from that described for Bacillus subtilis. The flhA mutant of B. thuringiensis was also defective in the secretion of hemolysin BL and phosphatidylcholine-preferring phospholipase C, although both of these virulence factors were synthesized by the mutant. Since complementation of the mutant with a plasmid harboring the flhA gene restored swimming and swarming motility as well as secretion of toxins, the overall results indicate that motility and virulence in B. thuringiensis may be coordinately regulated by flhA, which appears to play a crucial role in the export of flagellar as well as nonflagellar proteins.

The Bacillus Thuringiensis PlcR-regulated Gene InhA2 is Necessary, but Not Sufficient, for Virulence

We previously reported that Bacillus thuringiensis strain 407 Cry 32(-) secretes a zinc-requiring metalloprotease, InhA2, that is essential for virulence in orally infected insects. Analysis of the inhA2-lacZ transcriptional fusion showed that inhA2 expression is repressed in a PlcR(-) background. Using DNase I footprinting experiments, we demonstrated that PlcR activates inhA2 transcription directly by binding to a DNA sequence showing a one-residue mismatch with the previously reported PlcR box. It was previously reported that PlcR is essential for B. thuringiensis virulence in oral infection by contributing to the synergistic properties of the spores on the insecticidal activity of the Cry1C protein. We used complementation experiments to investigate whether the PlcR(-) phenotype was due to the absence of InhA2. The results indicated that overexpression of inhA2 in the (Delta)plcR strain did not restore the wild-type phenotype. However, virulence was fully restored in the (Delta)inhA2 complemented mutant. Thus, inhA2 is the first example of a PlcR-regulated gene found to be directly involved in virulence. However, it is not sufficient for pathogenicity when the other members of the PlcR regulon are lacking. This suggests that InhA2 may act in concert with other PlcR-regulated gene products to provide virulence.

Relationship of PlcR-regulated Factors to Bacillus Endophthalmitis Virulence

The explosive, destructive course of Bacillus endophthalmitis has been attributed to the production of toxins during infection. In this study we analyzed the contribution of toxins controlled by the global regulator plcR to the pathogenesis of experimental Bacillus endophthalmitis. Isogenic plcR-deficient mutants of Bacillus cereus and Bacillus thuringiensis were constructed by insertional inactivation of plcR by the kanamycin resistance cassette, aphA3. Rabbit eyes were injected intravitreally with approximately 100 CFU of wild-type B. cereus or B. thuringiensis or a plcR-deficient mutant. The evolution of endophthalmitis resulting from each plcR-deficient mutant was considerably slower than that caused by each wild-type strain. Retinal function was not eliminated until 42 h postinfection in rabbits with endophthalmitis caused by the plcR-deficient mutants, whereas wild-type infections resulted in a complete loss of retinal function within 18 h. The intraocular inflammatory cell influx and retinal destruction in plcR-deficient endophthalmitis approached the severity observed in wild-ype infections, but not until 36 h postinfection. Gross and histological examinations of eyes infected with plcR mutants demonstrated that the anterior and posterior segment changes were muted compared to the changes observed in eyes infected with the wild types. The loss of plcR-regulated factors significantly attenuated the severity of Bacillus endophthalmitis. The results therefore suggest that plcR may represent a target for which adjunct therapies could be designed for the prevention of blindness during Bacillus endophthalmitis.

An Extracytoplasmic-function Sigma Factor is Involved in a Pathway Controlling Beta-exotoxin I Production in Bacillus Thuringiensis Subsp. Thuringiensis Strain 407-1

Beta-exotoxin I is an insecticidal nucleotide analogue secreted by various Bacillus thuringiensis strains. In this report, we describe the characterization and transcriptional analysis of a gene cluster, designated sigW-ecfX-ecfY, that is essential for beta-exotoxin I production in B. thuringiensis subsp. thuringiensis strain 407-1. In this strain, the disruption of the sigW cluster resulted in nontoxic culture supernatants. sigW encodes a protein of 177 residues that is 97 and 94% identical to two putative RNA polymerase extracytoplasmic-function-type sigma factors from Bacillus anthracis strain Ames and Bacillus cereus strain ATCC 14579, respectively. It is also 50, 30, and 26% identical to SigW from Clostridium perfringens and SigW and SigX from Bacillus subtilis, respectively. EcfX, encoded by the gene following sigW, significantly repressed the expression of sigW when both genes were overtranscribed, suggesting that it could be the anti-sigma factor of SigW. Following the loss of its curable cry plasmid, strain 407 became unable to synthesize crystal toxins, in contrast to the mutant strain 407-1(Cry-)(Pig+), which overproduced this molecule in the absence of this plasmid. Transcriptional analysis of sigW indicated that this gene was expressed during the stationary phase and only in the 407-1(Cry-)(Pig+) mutant. This suggests that in the wild type-407(Cry+) strain, beta-exotoxin I was produced from determinants located on a cry gene-bearing plasmid and that sigW is able to induce beta-exotoxin I production in B. thuringiensis in the absence of cry gene-bearing plasmids. Although the signal responsible for this activation is unknown, these results indicate that beta-exotoxin I production in B. thuringiensis can be restored or induced via an alternative pathway that requires sigW expression.

Distinct Mutations in PlcR Explain Why Some Strains of the Bacillus Cereus Group Are Nonhemolytic

Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis are closely related species belonging to the Bacillus cereus group. B. thuringiensis and B. cereus generally produce extracellular proteins, including phospholipases and hemolysins. Transcription of the genes encoding these factors is controlled by the pleiotropic regulator PlcR. Disruption of plcR in B. cereus and B. thuringiensis drastically reduces the hemolytic, lecithinase, and cytotoxic properties of these organisms. B. anthracis does not produce these proteins due to a nonsense mutation in the plcR gene. We screened 400 B. thuringiensis and B. cereus strains for their hemolytic and lecithinase properties. Eight Hly- Lec- strains were selected and analyzed to determine whether this unusual phenotype was due to a mutation similar to that found in B. anthracis. Sequence analysis of the DNA region including the plcR and papR genes of these strains and genetic complementation of the strains with functional copies of plcR and papR indicated that different types of mutations were responsible for these phenotypes. We also found that the plcR genes of three B. anthracis strains belonging to different phylogenetic groups contained the same nonsense mutation, suggesting that this mutation is a distinctive trait of this species.

Comparison of Cytotoxin CytK Promoters from Bacillus Cereus Strain ATCC 14579 and from a B. Cereus Food-poisoning Strain

The cytotoxin CytK produced by Bacillus cereus is believed to be involved in food-borne diseases. The transcriptional activity of the cytK promoter region in a food-poisoning strain was studied using a reporter gene and compared with that in the reference B. cereus strain ATCC 14579. In the food-poisoning strain, cytK is more strongly transcribed, possibly explaining the pathogenicity. The global regulator PlcR in B. cereus controls several putative virulence factors. It was found that PlcR regulates cytK in this clinical strain despite a mismatch in the PlcR recognition site, as currently defined. This suggests that the PlcR box consensus should be reconsidered and that the PlcR regulon might be larger than suspected. It is also shown that the high level of cytK transcription is not caused by a modification in the PlcR recognition site.

Characterization of Two Bacillus Thuringiensis Genes Identified by in Vivo Screening of Virulence Factors

Bacillus thuringiensis vegetative cells are known to be highly pathogenic when injected into the hemocoel of susceptible insect larvae. This pathogenicity is due to the capacity of B. thuringiensis to cause septicemia in the host. We screened a B. thuringiensis mini-Tn10 insertion library for loss of virulence against Bombyx mori larvae on injection into the hemocoel. Three clones with attenuated virulence were isolated, corresponding to two different mini-Tn10 insertions mapping to the yqgB/yqfZ locus. Single disruptions of the yqgB and yqfZ genes did not affect virulence against B. mori. In contrast, the inactivation of both genes simultaneously reproduced the effect of the mini-Tn10 insertion and resulted in a significant delay to infection. The double DeltayqgB DeltayqfZ mutant was also nonmotile, and its growth was affected at 25 degrees C. We analyzed lacZ transcriptional fusions and detected promoter activity upstream from yqgB at 25 and 37 degrees C. Overall, our findings suggest that the yqgB and yqfZ genes encode adaptive factors that may act in synergy, enabling the bacteria to cope with the physical environment in vivo, facilitating colonization of the host.

Fate of Bacillus Thuringiensis Strains in Different Insect Larvae

In favorable conditions Bacillus thuringiensis spores germinate and vegetative cells multiply, whereas in unfavorable conditions Bacillus thuringiensis sporulates and produces insecticidal crystal proteins. The development of B. thuringiensis strains was investigated in the larvae of insects belonging to the orders Lepidoptera and Diptera. Bacillus thuringiensis strains able to kill the insects did not always multiply in cadavers. Strains with no specificity to kill the insect sometimes multiplied when the insects were killed mechanically. These results indicate that some insect larvae represent an environment that favors the germination of B. thuringiensis spores and the multiplication of vegetative cells; however, there was no correlation between the toxin specificity and the specificity of the host.

Specificity and Polymorphism of the PlcR-PapR Quorum-sensing System in the Bacillus Cereus Group

The expression of extracellular virulence factors in various species of the Bacillus cereus group is controlled by the plcR and papR genes, which encode a transcriptional regulator and a cell-cell signaling peptide, respectively. A processed form of PapR, presumably a pentapeptide, specifically interacts with PlcR to facilitate its binding to its DNA targets. This activating mechanism is strain specific, with this specificity being determined by the first residue of the pentapeptide. We carried out in vivo complementation assays and compared the PlcR-PapR sequences of 29 strains from the B. cereus group. Our findings suggested that the fifth amino acid of the pentapeptide is also involved in the specificity of activation. We identified four classes of PlcR-PapR pairs, defining four distinct pherotypes in the B. cereus group. We used these findings to look at the evolution of the PlcR-PapR quorum-sensing system with regard to the phylogeny of the species forming the B. cereus group.

The InhA1 Metalloprotease Allows Spores of the B. Cereus Group to Escape Macrophages

Bacteria of the Bacillus cereus group are resistant to the immune systems of various hosts and establish potent infections, implying that bacteria circumvent the bactericidal activity of host phagocytic cells. We investigated the fate of Bacillus spores after their internalization by macrophages. We found that these spores survive and escape from macrophages, and that the bacterial metalloprotease InhA1, the major component of the exosporium, is essential for efficient spore release from macrophages. InhA1 from Bacillus thuringiensis also enables Bacillus subtilis to escape from macrophages. Analysis of membrane permeability showed that the bacteria cause alterations in the macrophage membranes and that InhA1 is involved in these processes. Thus, InhA1 contributes to protect the bacteria against the host immune system. These findings provide further insight into the pathogenicity of B. cereus group members.

Bacillus Endophthalmitis: Roles of Bacterial Toxins and Motility During Infection

Bacillus endophthalmitis is a highly explosive infection of the eye that commonly results in rapid inflammation and vision loss, if not loss of the eye itself, within a few days. Quorum-sensing-controlled toxins are essential to virulence during infection. Another unique characteristic of this disease is the ability of Bacillus to replicate rapidly and migrate to all parts of the eye. This study was conducted to determine the combined roles of toxins and motility during Bacillus endophthalmitis.

A Comparative Study of Bacillus Cereus, Bacillus Thuringiensis and Bacillus Anthracis Extracellular Proteomes

Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis are closely related species that share a similar genetic background but occupy different ecological niches. Virulence plasmids bearing genes coding for toxins, may explain, at least partly, this specialization. We have compared by 2-DE in the early stationary phase of growth the extracellular proteomes of three strains of these species that have lost their virulence plasmids. Proteins expected to be secreted or to belong to the cell wall or to the cytosol were found in the three proteomes. For the cell wall and cytosolic proteins located in the extracellular space, the three proteomes were similar. Cytosolic proteins included enolase, GroEL, PdhB, PdhD, SodA and others. Cell surface proteins were mainly autolysins, proteases, nucleotidases and OppAs. In contrast, the secreted proteins profiles of B. cereus and B. thuringiensis were quite different from that of B. anthracis. B. cereus and B. thuringiensis extracellular proteomes both contained large amounts of secreted degradative enzymes and toxins, including nine proteases, three phospholipases, two haemolysins and several enterotoxins. Most of the genes encoding these enzymes and toxins are controlled by the transcriptional activator PlcR. The extracellular proteome of the pXO1-, pXO2- B. anthracis 9131 strain contained only one secreted protein: the metalloprotease InhA1, also found in the proteomes of the two other strains and possibly involved in antibacterial peptide degradation.

Bacillus Cereus Produces Several Nonproteinaceous Insecticidal Exotoxins

Bacillus cereus is mainly known as a human food-borne opportunistic pathogen. Here, we used biological assays and HPLC to investigate the ability of B. cereus to produce insecticidal exotoxins during the stationary growth phase. None of the 575 B. cereus strains screened produced detectable levels of beta-exotoxin I, a small, heat-stable insecticidal nucleotide analogue. However, six out of a subset of 270 B. cereus strains produced several small, nonproteinaceous insecticidal exotoxins different from beta-exotoxin I. Thus, B. cereus can secrete a large array of proteinaceous and nonproteinaceous toxins acting on insects and mammals.

FlhA Influences Bacillus Thuringiensis PlcR-regulated Gene Transcription, Protein Production, and Virulence

Bacillus thuringiensis and Bacillus cereus are closely related. B. thuringiensis is well known for its entomopathogenic properties, principally due to the synthesis of plasmid-encoded crystal toxins. B. cereus appears to be an emerging opportunistic human pathogen. B. thuringiensis and B. cereus produce many putative virulence factors which are positively controlled by the pleiotropic transcriptional regulator PlcR. The inactivation of plcR decreases but does not abolish virulence, indicating that additional factors like flagella may contribute to pathogenicity. Therefore, we further analyzed a mutant (B. thuringiensis 407 Cry(-) DeltaflhA) previously described as being defective in flagellar apparatus assembly and in motility as well as in the production of hemolysin BL and phospholipases. A large picture of secreted proteins was obtained by two-dimensional electrophoresis analysis, which revealed that flagellar proteins are not secreted and that production of several virulence-associated factors is reduced in the flhA mutant. Moreover, we quantified the effect of FlhA on plcA and hblC gene transcription. The results show that the flhA mutation results in a significant reduction of plcA and hblC transcription. These results indicate that the transcription of several PlcR-regulated virulence factors is coordinated with the flagellar apparatus. Consistently, the flhA mutant also shows a strong decrease in cytotoxicity towards HeLa cells and in virulence against Galleria mellonella larvae following oral and intrahemocoelic inoculation. The decrease in virulence may be due to both a lack of flagella and a lower production of secreted factors. Hence, FlhA appears to be an essential virulence factor with a pleiotropic role.

Self-control in DNA Site-specific Recombination Mediated by the Tyrosine Recombinase TnpI

Tn4430 is a distinctive transposon of the Tn3 family that encodes a tyrosine recombinase (TnpI) to resolve replicative transposition intermediates. The internal resolution site of Tn4430 (IRS, 116 bp) contains two inverted repeats (IR1 and IR2) at the crossover core site, and two additional TnpI binding motifs (DR1 and DR2) adjacent to the core. Deletion analysis demonstrated that DR1 and DR2 are not required for recombination in vivo and in vitro. Their function is to provide resolution selectivity to the reaction by stimulating recombination between directly oriented sites on a same DNA molecule. In the absence of DR1 and/or DR2, TnpI-mediated recombination of supercoiled DNA substrates gives a mixture of topologically variable products, while deletion between two wild-type IRSs exclusively produces two-noded catenanes. This demonstrates that TnpI binding to the accessory motifs DR1 and DR2 contributes to the formation of a specific synaptic complex in which catalytically inert recombinase subunits act as architectural elements to control recombination sites pairing and strand exchange. A model for the organization of TnpI/IRS recombination complex is presented.

Adhesion and Cytotoxicity of Bacillus Cereus and Bacillus Thuringiensis to Epithelial Cells Are FlhA and PlcR Dependent, Respectively

Some bacteria of the Bacillus cereus group are enteropathogens. The first cells encountered by bacteria following oral contamination of the host are epithelial cells. We studied the capacity of these bacteria to adhere to epithelial cells and the consequences of this interaction. We found that cell adhesion is strain dependent and that a strain mutated in flhA, which encodes a component of flagellum-apparatus formation, is impaired in adhesion, suggesting that flagella are important virulence factors. The bacteria are cytotoxic to epithelial cells and induce substantial cytoplasmic and membrane alterations. However, direct contact between cells and bacteria is not required for cytotoxicity. The determinants of this cytotoxicity are secreted and their expression depends on the pleiotropic regulator PlcR. Adhesion and cytotoxicity of B. cereus to epithelial cells might explain the diarrhea caused by these pathogens. Our findings provide further insight into the pathogenicity of B. cereus group members.

The Enhancin-like Metalloprotease from the Bacillus Cereus Group is Regulated by the Pleiotropic Transcriptional Activator PlcR but is Not Essential for Larvicidal Activity

Bacillus cereus group bacteria produce virulence factors. Many of these are regulated by the pleiotropic transcriptional activator PlcR, which is implicated in insect virulence. In silico analysis of the B. cereus strain ATCC14579 genome showed an enhancin-like gene preceded by a typical PlcR binding sequence. The gene is predicted to encode a polypeptide showing 23-25% identity with enhancins from several baculoviruses and 31% with that of Yersinia pestis. Viral enhancin acts after oral infection and degrades the peritrophic matrix of various Lepidopteran larvae. To rule out a possible implication of Bacillus enhancin in insect virulence, we sequenced the enhancin gene from the Bacillus thuringiensis 407-crystal minus strain and investigated its gene regulation and larvicidal activity. A typical metalloprotease zinc-binding domain (HEIAH) was detected and the gene was named mpbE (metalloprotease bacillus enhancin). An mpbE'-lacZ transcriptional fusion demonstrated that mpbE belongs to the PlcR regulon. The mpbE mutant was fed to Galleria mellonella larvae, and no significant reduction in virulence was observed. However, this may not exclude MpbE from a role in pathogenesis.

Biofilm Formation by Bacillus Cereus is Influenced by PlcR, a Pleiotropic Regulator

The DeltaplcR mutant of Bacillus cereus strain ATCC 14579 developed significantly more biofilm than the wild type and produced increased amounts of biosurfactant. Biosurfactant production is required for biofilm formation and may be directly or indirectly repressed by PlcR, a pleiotropic regulator. Coating polystyrene plates with surfactin, a biosurfactant from Bacillus subtilis, rescued the deficiency in biofilm formation by the wild type.

Identification of Bacillus Cereus Internalin and Other Candidate Virulence Genes Specifically Induced During Oral Infection in Insects

Bacillus cereus is an opportunistic bacterium frequently associated with food-borne infections causing gastroenteritis. We developed an in vivo expression technology (IVET), with an insect host, for identification of the B. cereus genes specifically expressed during infection. This IVET-based approach uses site-specific recombinase TnpI to identify transient promoter activation. We constructed a genomic library of B. cereus ATCC14579 by cloning DNA fragments upstream from tnpI. The library was screened in vivo by oral infection of the insect Galleria mellonella. We selected 100 clones from dead larvae. Sequencing of the inserts followed by a second screen for specific in vivo induction led to the identification of 20 in vivo-induced genes (ivi genes). They belonged to several different functional classes: regulation, metabolism, DNA repair and replication, cell division, transport, virulence and adaptation. A strongly induced gene, ivi29, was further analysed. It encodes an internalin-like protein with four distinct domains: an N-terminal signal peptide for export, a NEAT domain thought to be involved in iron transport, a leucine-rich repeat domain that may interact with host cells, and a C-terminal SLH domain presumably binding the protein to the peptidoglycan. As suggested by a Fur box in the promoter, transcriptional analysis showed ivi29 expression to be repressed by iron, suggesting that expression was induced in vivo due to iron deprivation in the host. This iron-regulated, leucine-rich surface protein was designated IlsA. Disruption of ilsA reduced the virulence of the bacteria to the insect larvae indicating its role in the overall pathogenesis of B. cereus.

Growth-related Variations in the Bacillus Cereus Secretome

Using 2-DE, transcriptional gene fusions and cell cytotoxicity assays, we followed changes in the Bacillus cereus strain ATCC14579 secretome, gene expression and culture supernatant cytotoxicity from the end of the vegetative phase up to 5 h after entry into the stationary phase. The concentration of each of the 22 proteins in the culture supernatant was determined at various times. In addition, the stability of the proteins was studied. Fifteen of these proteins, including 14 members of the virulence regulon PlcR, were known or predicted to be secreted. All of the secreted proteins reached a maximum concentration during early stationary phase, but there were significant differences in the kinetics of their concentrations. The time courses of protein concentrations were in agreement with gene expression data, except for cytotoxin CytK, which was unstable, and for the metalloprotease InhA1. Supernatant cytoxicity also peaked in early stationary phase, and the kinetics of cytotoxicity paralleled the time course of concentration of the PlcR-controlled toxin, CytK. Our concomitant study of the time course of protein concentrations, gene expression and supernatant cytotoxicity reveals that the pathogenic potential of B. cereus peaks during the transition state. It also suggests that there is diversity in the regulation of gene expression within the PlcR regulon.

Characterization of a Small PlcR-regulated Gene Co-expressed with Cereolysin O

In the human pathogen Bacillus cereus, the expression of most extracellular virulence factors is controlled by the transcriptional activator PlcR. Among these virulence factors, cereolysin O (Clo) is an haemolysin belonging to the cholesterol-dependant cytolysins, a protein family extensively studied in Gram-positive bacteria.

Biosurfactant Production and Surface Translocation Are Regulated by PlcR in Bacillus Cereus ATCC 14579 Under Low-nutrient Conditions

Bacillus cereus ATCC 14579 can respond to nutrient changes by adopting different forms of surface translocation. The B. cereus ATCC 14579 DeltaplcR mutant, but not the wild type, formed dendritic (branched) patterns on EPS [a low-nutrient medium that contains 7.0 g K(2)HPO(4), 3.0 g KH(2)PO(4), 0.1 g MgSO(4).7H(2)O, 0.1 g (NH(4))(2)SO(4), 0.01 g CaCl(2), 0.001 g FeSO(4), 0.1 g NaCl, 1.0 g glucose, and 125 mg yeast extract per liter] containing 0.7% agar. The dendritic patterns formed by sliding translocation of nonflagellated cells are enhanced under low-nutrient conditions and require sufficient production of a biosurfactant, which appears to be repressed by PlcR. The wild-type and complemented strains failed to slide on the surface of EPS agar because of the production of low levels of biosurfactant. Precoating EPS agar surfaces with surfactin (a biosurfactant produced by Bacillus subtilis) or biosurfactant purified from the DeltaplcR mutant rescued the ability of the wild-type and complemented strains to slide. When grown on a nutrient-rich medium like Luria-Bertani agar, both the wild-type and DeltaplcR mutant strains produced flagella. The wild type was hyperflagellated and elongated and exhibited swarming behavior, while the DeltaplcR mutant was multiflagellated and the cells often formed long chains but did not swarm. Thin-layer chromatography and mass spectrometry analyses suggested that the biosurfactant purified from the DeltaplcR mutant was a lipopeptide and had a mass of 1,278.1722 (m/z). This biosurfactant has hemolytic activity and inhibited the growth of several gram-positive bacteria.

Structure of PlcR: Insights into Virulence Regulation and Evolution of Quorum Sensing in Gram-positive Bacteria

Gram-positive bacteria use a wealth of extracellular signaling peptides, so-called autoinducers, to regulate gene expression according to population densities. These "quorum sensing" systems control vital processes such as virulence, sporulation, and gene transfer. Using x-ray analysis, we determined the structure of PlcR, the major virulence regulator of the Bacillus cereus group, and obtained mechanistic insights into the effects of autoinducer binding. Our structural and phylogenetic analysis further suggests that all of those quorum sensors that bind directly to their autoinducer peptide derive from a common ancestor and form a single family (the RNPP family, for Rap/NprR/PlcR/PrgX) with conserved features. As a consequence, fundamentally different processes in different bacterial genera appear regulated by essentially the same autoinducer recognition mechanism. Our results shed light on virulence control by PlcR and elucidate origin and evolution of multicellular behavior in bacteria.

Extending the Bacillus Cereus Group Genomics to Putative Food-borne Pathogens of Different Toxicity

The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic work and ecological compartments of different strains incite to consider a necessity of creating prophylactic vaccines against bacteria closely related to NVH391-98 and F837/76. Presumably developing of such vaccines can be based on the properties of non-pathogenic strains such as KBAB4 or ATCC14579 reported here or earlier. By comparing the protein coding genes of strains being sequenced in this project to others we estimate the shared proteome, or core genome, in the B. cereus group to be 3000+/-200 genes and the total proteome, or pan-genome, to be 20-25,000 genes.

The PlcR Virulence Regulon of Bacillus Cereus

PlcR is a Bacillus cereus transcriptional regulator, which activates gene expression by binding to a nucleotidic sequence called the 'PlcR box'. To build a list of all genes included in the PlcR regulon, a consensus sequence was identified by directed mutagenesis. The reference strain ATCC14579 sequenced genome was searched for occurrences of this consensus sequence to produce a virtual regulon. PlcR control of these genes was confirmed by comparing gene expression in the reference strain and its isogenic Delta-plcR strain using DNA microarrays, lacZ fusions and proteomics methods. The resulting list included 45 genes controlled by 28 PlcR boxes. Forty of the PlcR controlled proteins were exported, of which 22 were secreted in the extracellular medium and 18 were bound or attached to cell wall structures (membrane or peptidoglycan layer). The functions of these proteins were related to food supply (phospholipases, proteases, toxins), cell protection (bacteriocins, toxins, transporters, cell wall biogenesis) and environment-sensing (two-component sensors, chemotaxis proteins, GGDEF family regulators). Four genes coded for cytoplasmic regulators. The PlcR regulon appears to integrate a large range of environmental signals, including food deprivation and self cell-density, and regulate the transcription of genes designed to overcome obstacles that hinder B. cereus growth within the host: food supply, host barriers, host immune defenses, and competition with other bacterial species. PlcR appears to be a key component in the efficient adaptation of B. cereus to its host environment.

The YvfTU Two-component System is Involved in PlcR Expression in Bacillus Cereus

Most extracellular virulence factors produced by Bacillus cereus are regulated by the pleiotropic transcriptional activator PlcR. Among strains belonging to the B. cereus group, the plcR gene is always located in the vicinity of genes encoding the YvfTU two-component system. The putative role of YvfTU in the expression of the PlcR regulon was therefore investigated.

Generation of Mini-Tn10 Transposon Insertion Mutant Library of Bacillus Thuringiensis for the Investigation of Genes Required for Its Bacteriocin Production

Bacillus thuringiensis strain BUPM4 is known for its ability to produce a bacteriocin, called Bacthuricin F4 (BF4), which inhibits the growth of several Gram-positive bacteria and particularly Bacillaceae. This study aimed to use the insertional transposon mutagenesis approach for disrupting and thus identifying genes associated with BF4 synthesis. Here, the mini-Tn10 transposon was used to generate a library of B. thuringiensis mutants. Twenty thousand clones were screened for the search of mutants with affected bacteriocin synthesis. By molecular hybridization, it was demonstrated that the mini-Tn10 transposition occurred in different sites. Clone MB1, containing a mini-Tn10 single-copy insertion, lost the BF4 synthesis, but maintained its immunity to BF4. The flanking sequences surrounding the mini-Tn10 insertion were cloned and sequenced. Homology searches of the surrounding ORFs revealed a strong similarity to a phage tail component, which allowed us to postulate that BUPM4 bacteriocin could be a phage tail-like one.

Transfer of Bacillus Cereus Spores from Packaging Paper into Food

Food packaging papers are not sterile, as the manufacturing is an open process, and the raw materials contain bacteria. We modeled the potential transfer of the Bacillus cereus spores from packaging paper to food by using a green fluorescent protein-expressing construct of Bacillus thuringiensis Bt 407Cry(-) [pHT315Omega(papha3-gfp)], abbreviated BT-1. Paper (260 g m(-2)) containing BT-1 was manufactured with equipment that allowed fiber formation similar to that of full-scale manufactured paper. BT-1 adhered to pulp during papermaking and survived similar to an authentic B. cereus. Rice and chocolate were exposed to the BT-1-containing paper for 10 or 30 days at 40 or 20 degrees C at relative air humidity of 10 to 60%. The majority of the spores remained immobilized inside the fiber web; only 0.001 to 0.03% transferred to the foods. This amount is low compared with the process hygiene criteria and densities commonly found in food, and it does not endanger food safety. To measure this, we introduced BT-1 spores into the paper in densities of 100 to 1,000 times higher than the amounts of the B. cereus group bacteria found in commercial paper. Of BT-1 spores, 0.03 to 0.1% transferred from the paper to fresh agar surface within 5 min of contact, which is more than to food during 10 to 30 days of exposure. The findings indicate that transfer from paper to dry food is restricted to those microbes that are exposed on the paper surface and readily detectable with a contact agar method.

IlsA, a Unique Surface Protein of Bacillus Cereus Required for Iron Acquisition from Heme, Hemoglobin and Ferritin

The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts.

The InhA Metalloproteases of Bacillus Cereus Contribute Concomitantly to Virulence

The virulence of Bacillus cereus requires that bacteria have the capacity to colonize their host, degrade specific tissues, and circumvent the host immune system. To study this aspect of pathogenesis, we focused on three metalloproteases, InhA1, InhA2, and InhA3, which share more than 66% identity. The expression of these metalloprotease genes was assessed by transcriptional fusions with a lacZ reporter gene. The expression profiles suggest a complementary time course of InhA production. Indeed, the genes are simultaneously expressed but are oppositely controlled during stationary phase. We constructed single and multiple inhA mutants and assessed the bacterial locations of the proteins as well as their individual or additive roles in macrophage escape and toxicity, antibacterial-peptide cleavage, and virulence. InhA1, a major component of the spore exosporium, is the only InhA metalloprotease involved in bacterial escape from macrophages. A mutant lacking inhA1, inhA2, and inhA3 shows a strong decrease in the level of virulence for insects. Taken together, these results show that the InhA metalloproteases of B. cereus are important virulence factors that may allow the bacteria to counteract the host immune system.

InhA1, NprA, and HlyII As Candidates for Markers to Differentiate Pathogenic from Nonpathogenic Bacillus Cereus Strains

Bacillus cereus is found in food, soil, and plants, and the ability to cause food-borne diseases and opportunistic infection presumably varies among strains. Therefore, measuring harmful toxin production, in addition to the detection of the bacterium itself, may be key for food and hospital safety purposes. All previous studies have focused on the main known virulence factors, cereulide, Hbl, Nhe, and CytK. We examined whether other virulence factors may be specific to pathogenic strains. InhA1, NprA, and HlyII have been described as possibly contributing to B. cereus pathogenicity. We report the prevalence and expression profiles of these three new virulence factor genes among 57 B. cereus strains isolated from various sources, including isolates associated with gastrointestinal and nongastrointestinal diseases. Using PCR, quantitative reverse transcriptase PCR, and virulence in vivo assays, we unraveled these factors as potential markers to differentiate pathogenic from nonpathogenic strains. We show that the hlyII gene is carried only by strains with a pathogenic potential and that the expression levels of inhA1 and nprA are higher in the pathogenic than in the nonpathogenic group of strains studied. These data deliver useful information about the pathogenicity of various B. cereus strains.

In Vitro Digestion of Cry1Ab Proteins and Analysis of the Impact on Their Immunoreactivity

A pepsin resistance test performed at pH 1.2 and with high pepsin to protein ratio is one of the steps of the weight-of-evidence approach used for assessment of allergenicity of new proteins. However, the use of other in vitro digestibility tests, performed in more physiologically relevant conditions and in combination with immunological assays so as to increase the value of the information gained from the studies of stability of a novel protein to digestion for the overall allergenicity assessment, has been proposed. This study then aimed to investigate the stability to digestion of Cry1Ab protoxin and toxin, insecticidal proteins expressed in genetically modified crops, using simulated gastric fluid (SGF) at different pH values and pepsin-to-substrate ratios, in the presence or absence of physiological surfactant phosphatidylcholine (PC). Electrophoresis and immunoblot patterns and residual immunoreactivity of digesta were analyzed. Although Cry1Ab protoxin is extensively degraded at pH 1.2 with high pepsin-to-protein ratio, it is only slightly degraded at pH 2.0 and conserved its immunoreactivity. Furthermore, Cry1Ab proteins were demonstrated to be stable in a more physiologically relevant in vitro digestibility test (pH 2.5, pepsin-to-substrate ratio 1:20 (w/w) with PC). Factors such as pH, SGF composition, and pepsin-to-substrate ratio then greatly influence the digestion of Cry1Ab proteins, confirming that new and more physiologically relevant in vitro digestibility tests should be also considered to study the relationship between the resistance of a protein to digestion and its allergenicity.

CwpFM (EntFM) is a Bacillus Cereus Potential Cell Wall Peptidase Implicated in Adhesion, Biofilm Formation, and Virulence

Bacillus cereus EntFM displays an NlpC/P60 domain, characteristic of cell wall peptidases. The protein is involved in bacterial shape, motility, adhesion to epithelial cells, biofilm formation, vacuolization of macrophages, and virulence. These data provide new information on this, so far, poorly studied toxin and suggest that this protein is a cell wall peptidase, which we propose to rename CwpFM.

Bacillus Thuringiensis: an Impotent Pathogen?

Bacillus thuringiensis (Bt) is an insecticidal bacterium that has successfully been used as a biopesticide for many years. It is usually referred to as a soil-dwelling organism, as a result of the prevalence of its spores in this environment, but one that can act as an opportunistic pathogen under appropriate conditions. Our understanding of the biology of this organism has been challenged further by the recent publication of two reports that claim that Bt requires the co-operation of commensal bacteria within the gut of a susceptible insect for its virulence. It is our opinion that Bt is not primarily a saprophyte and does not require the assistance of commensal bacteria but is a true pathogen in its own right and furthermore that its primary means of reproduction is in an insect cadaver.

Conjugal Transfer Between Bacillus Thuringiensis and Bacillus Cereus Strains is Not Directly Correlated with Growth of Recipient Strains

Bacillus thuringiensis and Bacillus cereus belong to the B. cereus species group. The two species share substantial chromosomal similarity and differ mostly in their plasmid content. The phylogenetic relationship between these species remains a matter of debate. There is genetic exchange both within and between these species, and current evidence indicates that insects are a particularly suitable environment for the growth of and genetic exchange between these species. We investigated the conjugation efficiency of B. thuringiensis var. kurstaki KT0 (pHT73-Em) as a donor and a B. thuringiensis and several B. cereus strains as recipients; we used one-recipient and two-recipient conjugal transfer systems in vitro (broth and filter) and in Bombyx mori larvae, and assessed multiplication following conjugation between Bacillus strains. The B. thuringiensis KT0 strain did not show preference for genetic exchange with the B. thuringiensis recipient strain over that with the B. cereus recipient strains. However, B. thuringiensis strains germinated and multiplied more efficiently than B. cereus strains in insect larvae and only B. thuringiensis maintained complete spore germination for at least 24 h in B. mori larvae. These findings show that there is no positive association between bacterial multiplication efficiency and conjugation ability in infected insects for the used strains.

Haemolysin II is a Bacillus Cereus Virulence Factor That Induces Apoptosis of Macrophages

Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation despite the recruitment of phagocytic cells. The precise mechanisms and the bacterial factors allowing B. cereus to circumvent host immune responses remain to be elucidated. We have previously shown that B. cereus induces macrophage cell death by an unknown mechanism. Here we identified the toxic component from the B. cereus supernatant. We report that Haemolysin II (HlyII) provokes macrophage cell death by apoptosis through its pore-forming activity. The HlyII-induced apoptotic pathway is caspase 3 and 8 dependent, thus most likely mediated by the death receptor pathway. Using insects and mice as in vivo models, we show that deletion of hlyII strongly reduces virulence. In addition, we show that after infection of Bombyx mori larvae, the immune cells are apoptotic, demonstrating that HlyII induces apoptosis of phagocytic cells in vivo. Altogether, our results clearly unravel HlyII as a novel virulence protein that induces apoptosis in phagocytic cells in vitro and in vivo.

Purification and Characterization of a New Bacillus Thuringiensis Bacteriocin Active Against Listeria Monocytogenes, Bacillus Cereus and Agrobacterium Tumefaciens

This study reports on the identification, characterization and purification of a new bacteriocin, named Bacthuricin F103, from a Bacillus thuringiensis strain BUPM103. Bacthuricin F103 production began in the early exponential phase and reached a maximum in the middle of the same phase. Two chromatographic methods based on high performance liquid chromatography and fast protein liquid chromatography systems were used to purify Bacthuricin F103. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed that this bacteriocin had a molecular weight of approximately 11 kDa. It also showed a wide range of thermostability of up to 80 °C for 60 min and a broad spectrum of antimicrobial activity over a pH range of 3.0-10.0. This bacteriocin was noted, and for the first time, to exhibit potent antimicrobial activity against Agrobacterium subsp. strains, the major causal agents of crown gall disease in tomato and vineyard crops, and against several challenging organisms in food, such as Listeria monocytogenes and Bacillus cereus. Complete killing with immediate impact on cells was observed within a short period of time. The sequence obtained for Bacthuricin F103 by direct N-terminal sequencing shared considerable homology with hemolysin. Bacthuricin F103 was noted to act through the depletion of intracellular ions, which suggest that the cell membrane was a possible target to Bacthuricin F103.

Role Played by Exosporium Glycoproteins in the Surface Properties of Bacillus Cereus Spores and in Their Adhesion to Stainless Steel

Bacillus cereus spores are surrounded by a loose-fitting layer called the exosporium, whose distal part is mainly formed from glycoproteins. The role played by the exosporium glycoproteins of B. cereus ATCC 14579 (BclA and ExsH) was investigated by considering hydrophobicity and charge, as well as the properties of spore adhesion to stainless steel. The absence of BclA increased both the isoelectric point (IEP) and hydrophobicity of whole spores while simultaneously reducing the interaction between spores and stainless steel. However, neither the hydrophobicity nor the charge associated with BclA could explain the differences in the adhesion properties. Conversely, ExsH, another exosporium glycoprotein, did not play a significant role in spore surface properties. The monosaccharide analysis of B. cereus ATCC 14579 showed different glycosylation patterns on ExsH and BclA. Moreover, two specific glycosyl residues, namely, 2-O-methyl-rhamnose (2-Me-Rha) and 2,4-O-methyl-rhamnose (2,4-Me-Rha), were attached to BclA, in addition to the glycosyl residues already reported in B. anthracis.

A Cell-cell Communication System Regulates Protease Production During Sporulation in Bacteria of the Bacillus Cereus Group

In sporulating Bacillus, major processes like virulence gene expression and sporulation are regulated by communication systems involving signalling peptides and regulators of the RNPP family. We investigated the role of one such regulator, NprR, in bacteria of the Bacillus cereus group. We show that NprR is a transcriptional regulator whose activity depends on the NprX signalling peptide. In association with NprX, NprR activates the transcription of an extracellular protease gene (nprA) during the first stage of the sporulation process. The transcription start site of the nprA gene has been identified and the minimal region necessary for full activation has been characterized by promoter mutagenesis. We demonstrate that the NprX peptide is secreted, processed and then reimported within the bacterial cell. Once inside the cell, the mature form of NprX, presumably the SKPDIVG heptapeptide, directly binds to NprR allowing nprA transcription. Alignment of available NprR sequences from different species of the B. cereus group defines seven NprR clusters associated with seven NprX heptapeptide classes. This cell-cell communication system was found to be strain-specific with a possible cross-talk between some pherotypes. The phylogenic relationship between NprR and NprX suggests a coevolution of the regulatory protein and its signalling peptide.

Bacillus Cytotoxicus Sp. Nov. is a New Thermotolerant Species of the Bacillus Cereus Group Occasionally Associated with Food Poisoning

An aerobic endospore-forming bacilli (NVH 391-98T) was isolated during a severe food poisoning outbreak in France in 1998, and four other similar strains have since been isolated, also mostly from food poisoning cases. Based on 16S rRNA gene sequence similarity, these strains were shown to belong to the B. cereus Group (over 97% similarity with the current Group species), and phylogenetic distance from other validly described species of the genus Bacillus was less than 95%. Based on 16S rRNA gene sequence similarity and MLST data, these new strains were shown to form a robust and well-separated cluster in the B. cereus Group, and constituted the most distant cluster from species of this Group. Major fatty acids (iso-C15:0, C16:0, iso-C17:0, anteiso-C15:0, iso-C16:0, iso-C13:0) supported the affiliation of these strains to the Bacillus genus, and more specifically to the B. cereus Group. NVH 391-98T taxon was more specifically characterized by abundance of iso-C15:0 and low amounts of iso-C13:0 compared to other members of the B. cereus Group. Genome similarity together with DNA-DNA hybridization values and physiological and biochemical tests made it possible to genotypically and phenotypically differentiate NVH 391-98T taxon from the six current B. cereus Group species. NVH 391-98T represents therefore a new species, for which the name Bacillus cytotoxicus sp. nov. is proposed, with the type strain NVH 391-98T (=DSM 22905T =CIP 110041T).

Identification of the Promoter in the Intergenic Region Between Orf1 and Cry8Ea1 Controlled by Sigma H Factor

Bacillus thuringiensis Cry8Ea toxin is specifically toxic to larvae of the Asian cockchafer, Holotrichia parallela. Here we investigated the mechanism of transcriptional regulation of the cry8Ea1 gene. Reverse transcription-PCR (RT-PCR) results indicated that cry8Ea1 and an upstream gene (orf1) were cotranscribed. Transcriptional fusions with the lacZ gene demonstrated that transcription of the cry8Ea1 gene started from two promoters: P(orf1), which is located upstream of the orf1 gene, and P(cry8E), located in the intergenic region mapping between orf1 and cry8Ea1. Of the known, similar orf1-cry operons, this is the first report of the existence of a promoter in the intergenic region between the orf1 and cry genes. The transcriptional activity of P(orf1) was found during sporulation in B. thuringiensis subsp. kurstaki HD-73 and was almost abolished in the sigE mutant, while the transcriptional activity of P(cry8E) was detected after the end of the exponential phase in HD-73 and was considerably lower in the sigH mutant. The transcription start sites generated by the two cry8Ea1 promoters were determined by the 5' -SMARTer rapid amplification of cDNA ends (RACE) method. The -35 and -10 regions of P(orf1) and P(cry8E) showed high sequence similarity with the σ(E) and σ(H) promoters, respectively. These results indicated that P(orf1) is controlled by the σ(E) factor and P(cry8E) by the σ(H) factor.

Necrotrophism is a Quorum-sensing-regulated Lifestyle in Bacillus Thuringiensis

How pathogenic bacteria infect and kill their host is currently widely investigated. In comparison, the fate of pathogens after the death of their host receives less attention. We studied Bacillus thuringiensis (Bt) infection of an insect host, and show that NprR, a quorum sensor, is active after death of the insect and allows Bt to survive in the cadavers as vegetative cells. Transcriptomic analysis revealed that NprR regulates at least 41 genes, including many encoding degradative enzymes or proteins involved in the synthesis of a nonribosomal peptide named kurstakin. These degradative enzymes are essential in vitro to degrade several substrates and are specifically expressed after host death suggesting that Bt has an active necrotrophic lifestyle in the cadaver. We show that kurstakin is essential for Bt survival during necrotrophic development. It is required for swarming mobility and biofilm formation, presumably through a pore forming activity. A nprR deficient mutant does not develop necrotrophically and does not sporulate efficiently in the cadaver. We report that necrotrophism is a highly regulated mechanism essential for the Bt infectious cycle, contributing to spore spreading.

A Multicomponent Sugar Phosphate Sensor System Specifically Induced in Bacillus Cereus During Infection of the Insect Gut

Using a previously developed Bacillus cereus in vivo expression technology (IVET) promoter trap system, we showed that spsA, a gene of unknown function, was specifically expressed in the larval gut during infection. Search for gut-related compounds inducing spsA transcription identified glucose-6-phosphate (G6P) as an activation signal. Analysis of the spsA-related 5-gene cluster indicated that SpsA is part of a new sugar phosphate sensor system composed of a 2-component system (TCS) encoded by spsR and spsK, and 2 additional downstream genes, spsB and spsC. In B. cereus, American Type Culture Collection (ATCC) 14579, spsRK, and spsABC are separate transcriptional units, of which only spsABC was activated by extracellular G6P. lacZ transcriptional fusions tested in mutant and complemented strains showed that SpsRK, SpsA, and SpsB are essential for the transcription of spsABC. Deletion mutant analysis showed that SpsC is essential for the G6P uptake. gfp-transcriptional fusions showed that these genes are required for host-activated expression, as well. This sugar phosphate sensor and transport system is found in pathogenic Bacillus group and Clostridia bacteria and may be important for host adaptation. Our findings provide new insights into the function of 2-component sensor systems in host-pathogen interactions, specifically in the gut.

How the Insect Pathogen Bacteria Bacillus Thuringiensis and Xenorhabdus/Photorhabdus Occupy Their Hosts

Insects are the largest group of animals on earth. Like mammals, virus, fungi, bacteria and parasites infect them. Several tissue barriers and defense mechanisms are common for vertebrates and invertebrates. Therefore some insects, notably the fly Drosophila and the caterpillar Galleria mellonella, have been used as models to study host-pathogen interactions for several insect and mammal pathogens. They are excellent tools to identify pathogen determinants and host tissue cell responses. We focus here on the comparison of effectors used by two different groups of bacterial insect pathogens to accomplish the infection process in their lepidopteran larval host: Bacillus thuringiensis and the nematode-associated bacteria, Photorhabdus and Xenorhabdus. The comparison reveals similarities in function and expression profiles for some genes, which suggest that such factors are conserved during evolution in order to attack the tissue encountered during the infection process.

Structure, Biosynthesis, and Properties of Kurstakins, Nonribosomal Lipopeptides from Bacillus Spp

A new family of lipopeptides produced by Bacillus thuringiensis, the kurstakins, was discovered in 2000 and considered as a biomarker of this species. Kurstakins are lipoheptapeptides displaying antifungal activities against Stachybotrys charatum. Recently, the biosynthesis mechanism, the regulation of this biosynthesis and the potential new properties of kurstakins were described in the literature. In addition, kurstakins were also detected in other species belonging to Bacillus genus such as Bacillus cereus. This mini-review gathers all the information about these promising bioactive molecules.

Weak Transcription of the Cry1Ac Gene in Nonsporulating Bacillus Thuringiensis Cells

The cry1Ac gene of Bacillus thuringiensis subsp. kurstaki HD-73 (B. thuringiensis HD-73) is a typical example of a sporulation-dependent crystal gene and is controlled by sigma E and sigma K during sporulation. To monitor the production and accumulation of Cry1Ac at the cellular level, we developed a green fluorescent protein-based reporter system. The production of Cry1Ac was monitored in spo0A, sigE, and sigK mutants, and these mutants were able to express the Cry1Ac-green fluorescent protein fusion protein. In nonsporulating B. thuringiensis HD-73 cells, low-level expression of cry1Ac was also observed. Reverse transcription-PCR and Western blotting results confirmed that the cry1Ac promoter has low activity in nonsporulating B. thuringiensis cells. A beta-galactosidase assay demonstrated that the transcription of the cry1Ac gene during exponential and transition phases is positively regulated by Spo0A. Additional bioassay results indicated that spo0A and sigE mutants containing the cry1Ac-gfp fusion exhibited insecticidal activity against Plutella xylostella larvae.

Pathogenic Potential of B. Cereus Strains Revealed by Phenotypic Analysis

B. cereus pathogenic spectrum ranges from strains used as probiotics, to human lethal strains. However, prediction of the pathogenic potential of a strain remains difficult. Here, we show that food poisoning and clinical strains can be differentiated from harmless strains on the basis of host colonization phenotypes.

Waiting
simple hit counter