You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment


JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You have trial access to videos in this collection until May 31, 2014.

In JoVE (1)

Other Publications (10)

Articles by Mustapha Riad in JoVE

 JoVE Neuroscience

Preparation of Mouse Brain Tissue for Immunoelectron Microscopy

1Department of Neurobiology and Anatomy, University of Rochester, 2Douglas Mental Health University Institute

JoVE 2021

We describe a protocol for transcardiac perfusion of mice, removal and sectioning of the brain, as well as immunoperoxidase staining, resin embedding, and ultrathin sectioning of the brain sections. Upon completion of these procedures, the immunostained material is ready for examination with transmission electron microscopy.

Other articles by Mustapha Riad on PubMed

Acute Treatment with the Antidepressant Fluoxetine Internalizes 5-HT1A Autoreceptors and Reduces the in Vivo Binding of the PET Radioligand [18F]MPPF in the Nucleus Raphe Dorsalis of Rat

Because 5-HT1A receptors located on the soma dendrites of serotonin (5-HT) neurons normally mediate an inhibition of 5-HT firing and release, the desensitization of these autoreceptors is essential for obtaining an enhancement of 5-HT transmission after treatment with 5-HT reuptake inhibitors (SSRIs). We have demonstrated previously, using immunoelectron microscopy with specific 5-HT1A antibodies, that an internalization of 5-HT1A autoreceptors is associated with their desensitization in rats given a single dose of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin. Here, we examined the subcellular distribution of 5-HT1A receptors in dendrites from nucleus raphe dorsalis (NRD) (autoreceptors) and hippocampus (heteroreceptors) after acute treatment with the antidepressant SSRI, fluoxetine (10 mg/kg, i.p.). In parallel experiments, the kinetics of in vivo binding of the 5-HT1A positron emission tomography radioligand 4,2-(methoxyphenyl)-1-[2-(N-2-pyridinyl)-p-fluorobenzamido]ethylpiperazine ([18F]MPPF) was measured in these two brain regions by means of stereotaxically implanted beta microprobes. One hour after treatment, there was a 36% decrease in 5-HT1A immunogold labeling of the plasma membrane of NRD dendrites, and a concomitant increase in their cytoplasmic labeling, without any change in hippocampal dendrites. In vivo binding of [18F]MPPF was reduced by 35% in NRD and unchanged in hippocampus. Both effects were blocked by pretreatment with the 5-HT1A receptor antagonist (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane-carboxamide) (1 mg/kg, i.p.). In brain sections of NRD and hippocampus, [18F]MPPF autoradiographic labeling did not differ between fluoxetine- and saline-treated rats. These immunocytochemical results confirmed that internalization of 5-HT1A autoreceptors may account for their desensitization, and the microprobe results suggest that this prerequisite for antidepressant treatment efficacy could be amenable to brain imaging in humans.

Immunocytochemical Evidence for the Existence of Substance P Receptor (NK1) in Serotonin Neurons of Rat and Mouse Dorsal Raphe Nucleus

In addition to its neurotransmitter/modulator role in pain perception, substance P (SP) is involved in a regulation of mood, as antagonists of its neurokinin-1 receptor (NK1r) have been found to have antidepressant-like effects in humans. In rodents, treatment with NK1r antagonists has been shown to increase the firing of dorsal raphe nucleus (DRN) serotonin (5-hydroxytryptamine, 5-HT) neurons and to induce a desensitization of their 5-HT1A autoreceptors, suggesting local interactions between the SP and 5-HT systems. To search for the presence of NK1r on 5-HT neurons of the DRN, we used light and electron microscopic immunocytochemistry, as well as confocal microscopy, after single- and double-labelling of NK1r and of the biosynthetic enzyme of 5-HT, tryptophan hydroxylase (TpOH). A significant number of 5-HT (TpOH-positive) cell bodies and dendrites endowed with NK1r were thus demonstrated in the caudal part of rat and mouse DRN. As visualized by electron microscopy after gold immunolabelling, NK1r was mostly cytoplasmic in 5-HT neurons, while predominating on the plasma membrane in the case of TpOH-negative dendrites. The proportion of NK1r observed on the plasma membrane of 5-HT neurons was, however, slightly higher in mouse than rat. Thus, in both rat and mouse DRN, a subpopulation of 5-HT neurons is endowed with NK1r receptors and may be directly involved in the antidepressant-like effects of NK1r antagonists. These 5-HT neurons represent a new element in the neuronal circuitry currently proposed to account for the role of SP in mood regulation.

A PET Imaging Study of 5-HT(1A) Receptors in Cat Brain After Acute and Chronic Fluoxetine Treatment

Immuno-electron microscopic and beta-microprobe studies have demonstrated that the internalization of serotonin 5-HT(1A) autoreceptors, after acute treatment with the selective 5-HT(1A) receptor agonist 8-OH-DPAT or with the specific serotonin reuptake inhibitor (SSRI) fluoxetine, is associated with a marked decrease in the in vivo binding of [(18)F]MPPF in the nucleus raphe dorsalis (NRD) of rat. To determine whether this event might be amenable to brain imaging, the present [(18)F]MPPF positron emission tomographic (PET) study was carried out in anesthetized cats given or not a single dose (5 mg/kg, i.v.) or chronically treated with fluoxetine (5 mg/kg, s.c. for 21 days). Compared to control, [(18)F]MPPF binding potential was considerably (and visibly) decreased in the cat NRD after acute fluoxetine treatment, while it remained unchanged in other brain regions. Unexpectedly, after chronic fluoxetine treatment, [(18)F]MPPF binding potential was not affected in any brain region. In parallel immuno-electron microscopic experiments carried out in rat, the density of 5-HT(1A) autoreceptors on the plasma membrane of NRD dendrites was comparable to control after chronic fluoxetine treatment. If the decrease in [(18)F]MPPF binding at the onset of SSRI treatment was detectable by PET imaging, it could potentially serve as a biological index of efficacy.

Localization of EphA4 in Axon Terminals and Dendritic Spines of Adult Rat Hippocampus

Eph receptors and their ephrin ligands assume various roles during central nervous system development. Several of these proteins are also expressed in the mature brain, and notably in the hippocampus, where EphA4 and ephrins have been shown to influence dendritic spine morphology and long-term potentiation (LTP). To examine the cellular and subcellular localization of EphA4 in adult rat ventral hippocampus, we used light and electron microscopic immunocytochemistry with a specific polyclonal antibody against EphA4. After immunoperoxidase labeling, EphA4 immunoreactivity was found to be enriched in the neuropil layers of CA1, CA3, and dentate gyrus. In all examined layers of these regions, myelinated axons, small astrocytic leaflets, unmyelinated axons, dendritic spines, and axon terminals were immunolabeled in increasing order of frequency. Neuronal cell bodies and dendritic branches were immunonegative. EphA4-labeled dendritic spines and axon terminals corresponded to 9-19% and 25-40% of the total number of spines and axon terminals, respectively. Most labeled spines were innervated by unlabeled terminals, but synaptic contacts between two labeled elements were seen. The vast majority of synaptic junctions made by labeled elements was asymmetrical and displayed features of excitatory synapses. Immunogold labeling of EphA4 was located mostly on the plasma membrane of axons, dendritic spines, and axon terminals, supporting its availability for surface interactions with ephrins. The dual preferential labeling of EphA4 on pre- or postsynaptic specializations of excitatory synapses in adult rat hippocampus is consistent with roles for this receptor in synaptic plasticity and LTP.

Glutamate in Dopamine Neurons: Synaptic Versus Diffuse Transmission

There is solid electron microscopic data demonstrating the existence of dopamine (DA) axon terminals (varicosities) with or without synaptic membrane specializations (junctional complexes) in many parts of the CNS, and notably in neostriatum and nucleus accumbens. The dual morphological character of these DA innervations has led to the suggestion that the meso-telencephalic DA system operates by diffuse (or volume) as well as by classical synaptic transmission. In the last decade, electrophysiological and neurochemical evidence has also accumulated indicating that monoamine neurons in various parts of the CNS, and particularly the mesencephalic DA neurons, might release glutamate as a co-transmitter. Following the identification of the vesicular transporters for glutamate (VGluT), in situ hybridization and RT-PCR studies carried out on isolated neurons or standard tissue cultures, and more recently in vivo, have shown that VGluT2 mRNA may be expressed in a significant proportion of mesencephalic DA neurons, at least in the ventral tegmental area. A current study also suggests that the co-expression of tyrosine hydroxylase (TH) and VGluT2 by these neurons is regulated during embryonic development, and may be derepressed or reactivated postnatally following their partial destruction by neonatal administration of 6-hydroxydopamine (6-OHDA). In both 15 day-old and adult rats subjected or not to the neonatal 6-OHDA lesion, concurrent electron microscopic examination of the nucleus accumbens after dual immunocytochemical labeling for TH and VGluT2 reveals the co-existence of the two proteins in a significant proportion of these axon terminals. Moreover, all TH varicosities which co-localize VGluT2 are synaptic, as if there was a link between the potential of DA axon terminals to release glutamate and their establishment of synaptic junctions. Together with the RT-PCR and in situ hybridization data demonstrating the co-localization of TH and VGluT2 mRNA in mesencephalic neurons of the VTA, these observations raise a number of fundamental questions regarding the functioning of the meso-telencephalic DA system in healthy or diseased brain.

Pre-synaptic and Post-synaptic Localization of EphA4 and EphB2 in Adult Mouse Forebrain

The ephrin receptors EphA4 and EphB2 have been implicated in synaptogenesis and long-term potentiation in the cerebral cortex and hippocampus, where they are generally viewed as post-synaptic receptors. To determine the precise distribution of EphA4 and EphB2 in mature brain synapses, we used subcellular fractionation and electron microscopy to examine the adult mouse forebrain/midbrain. EphA4 and EphB2 were both enriched in microsomes and synaptosomes. In synaptosomes, they were present in the membrane and the synaptic vesicle fractions. While EphA4 was tightly associated with PSD-95-enriched post-synaptic density fractions, EphB2 was easily extracted with detergents. In contrast, both receptors were found in the pre-synaptic active zone fraction. By electron microscopy, EphA4 was mainly detected in axon terminals, whereas EphB2 was more frequently detected in large dendritic shafts, in the hippocampus and cerebral cortex. However, in the ventrobasal thalamus, EphB2 was detected most frequently in axon terminals and thin dendritic shafts. The localization of EphA4 and EphB2 in multiple compartments of neurons and synaptic junctions suggests that they interact with several distinct scaffolding proteins and play diverse roles at synapses.

Developmental Course of EphA4 Cellular and Subcellular Localization in the Postnatal Rat Hippocampus

From embryonic development to adulthood, the EphA4 receptor and several of its ephrin-A or -B ligands are expressed in the hippocampus, where they presumably play distinct roles at different developmental stages. To help clarify these diverse roles in the assembly and function of the hippocampus, we examined the cellular and subcellular localization of EphA4 in postnatal rat hippocampus by light and electron microscopic immunocytochemistry. On postnatal day (P) 1, the EphA4 immunostaining was robust in most layers of CA1, CA3, and dentate gyrus and then decreased gradually, until P21, especially in the cell body layers. At the ultrastructural level, focal spots of EphA4 immunoreactivity were detected all over the plasma membrane of pyramidal and granule cells, between P1 and P14, from the perikarya to the dendritic and axonal extremities, including growth cones and filopodia. This cell surface immunoreactivity then became restricted to the synapse-associated dendritic spines and axon terminals by P21. In astrocytes, the EphA4 immunolabeling showed a similar cell surface redistribution, from the perikarya and large processes at P1-P7, to small perisynaptic processes at P14-P21. In both cell types, spots of EphA4 immunoreactivity were also detected, with an incidence decreasing with maturation, on the endoplasmic reticulum, Golgi apparatus, and vesicles, organelles involved in protein synthesis, posttranslational modifications, and transport. The cell surface evolution of EphA4 localization in neuronal and glial cells is consistent with successive involvements in the developmental movements of cell bodies first, followed by process outgrowth and guidance, synaptogenesis, and finally synaptic maintenance and plasticity.

Trafficking of Neurokinin-1 Receptors in Serotonin Neurons is Controlled by Substance P Within the Rat Dorsal Raphe Nucleus

Substance P (SP) modulates serotonin neurotransmission via neurokinin-1 receptors (NK1rs), and exerts regulatory effects on mood through habenular afferents to the dorsal raphe nucleus (DRN). We have previously demonstrated that, in the caudal DRN of rat, some serotonin neurons are endowed with NK1rs that are mostly cytoplasmic, whereas these receptors are mostly membrane bound in non-serotonin neurons. Here, we first examined by double-labeling immunocytochemistry the relationships between SP axon terminals and these two categories of DRN neurons. Almost half of the SP terminals were synaptic and many were in close contact with serotonin dendrites, but never with non-serotonin dendrites. In additional double-immunolabeling experiments, most if not all dendrites bearing membranous NK1rs appeared to be GABAergic. Treatment with the selective neurokinin-1 antagonist RP67580 modified the subcellular distribution of NK1rs in serotonin neurons. At 1 h after administration of a single dose, the receptor distribution was unchanged in both dendritic types but, after daily administration for 7 or 21 days, the plasma membrane and cytoplasmic density of NK1rs were increased in serotonin dendrites, without any change in non-serotonin dendrites. These treatments also increased NK1r gene expression in the caudal DRN. Lastly, a marked increase in the membrane (but not cytoplasmic) density of NK1rs was measured in serotonin dendrites after bilateral habenular lesion. These results suggest that the trafficking of NK1rs represents a cellular mechanism in control of the modulation of serotonin neuron activity by SP in DRN.

The Dual Dopamine-glutamate Phenotype of Growing Mesencephalic Neurons Regresses in Mature Rat Brain

Coexpression of tyrosine hydroxylase (TH) and vesicular glutamate transporter 2 (VGLUT2) mRNAs in the ventral tegmental area (VTA) and colocalization of these proteins in axon terminals of the nucleus accumbens (nAcb) have recently been demonstrated in immature (15-day-old) rat. After neonatal 6-hydroxydopamine (6-OHDA) lesion, the proportion of VTA neurons expressing both mRNAs and of nAcb terminals displaying the two proteins was enhanced. To determine the fate of this dual phenotype in adults, double in situ hybridization and dual immunolabeling for TH and VGLUT2 were performed in 90-day-old rats subjected or not to the neonatal 6-OHDA lesion. Very few neurons expressed both mRNAs in the VTA and substantia nigra (SN) of P90 rats, even after neonatal 6-OHDA. Dually immunolabeled terminals were no longer found in the nAcb of normal P90 rats and were exceedingly rare in the nAcb of 6-OHDA-lesioned rats, although they had represented 28% and 37% of all TH terminals at P15. Similarly, 17% of all TH terminals in normal neostriatum and 46% in the dopamine neoinnervation of SN in 6-OHDA-lesioned rats were also immunoreactive for VGLUT2 at P15, but none at P90. In these three regions, all dually labeled terminals made synapse, in contradistinction to those immunolabeled for only TH or VGLUT2 at P15. These results suggest a regression of the VGLUT2 phenotype of dopamine neurons with age, following normal development, lesion, or sprouting after injury, and a role for glutamate in the establishment of synapses by these neurons.

EphA4 is Localized in Clathrin-coated and Synaptic Vesicles in Adult Mouse Brain

EphA4, a receptor tyrosine kinase, is expressed in various pre-, post- and peri-synaptic organelles and implicated in the regulation of morphological and physiological properties of synapses. It regulates synaptic plasticity by acting as a binding partner for glial ephrin-A3 and possibly other pre- or post-synaptic ephrins. Now, its trafficking mechanisms remain unknown. In this study, we examine the association of EphA4 with transport, clathrin-coated and synaptic vesicles using cell fractionation, vesicle immunoisolation and electron microscopy. EphA4 was found in highly purified fractions of clathrin-coated or synaptic vesicles. It was also detected in vesicles immuno-isolated with antibodies anti-synaptophysin, anti-vesicular glutamate transporter or anti-vesicular GABA transporter; demonstrating its presence in synaptic vesicles. However, it was not detected in immuno-isolated piccolo-bassoon transport vesicles. In vivo and in dissociated cultures, EphA4 was localized by immunoelectron microscopy in vesicular glutamate transporter 1-positive terminals of hippocampal neurons. Remarkably, the cell surface immunofluorescence of EphA4 increased markedly in cultured hippocampal neurons following KCl depolarization. These observations indicate that EphA4 is present in subsets of synaptic vesicles, can be externalized during depolarization, and internalized within clathrin-coated vesicles. This trafficking itinerary may serve to regulate the levels of EphA4 in the synaptic plasma membrane and thereby modulate signaling events that contribute to synaptic plasticity.

simple hit counter