JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Developmental Biology

You have subscription access to videos in this collection through your user account.

In JoVE (1)

Other Publications (2)

Articles by Shivendra Pandey in JoVE

 JoVE Chemistry

Origami Inspired Self-assembly of Patterned and Reconfigurable Particles

1Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 2Department of Chemistry, The Johns Hopkins University


JoVE 50022

We describe experimental details of the synthesis of patterned and reconfigurable particles from two dimensional (2D) precursors. This methodology can be used to create particles in a variety of shapes including polyhedra and grasping devices at length scales ranging from the micro to centimeter scale.

Other articles by Shivendra Pandey on PubMed

Green Fluorescent Protein for in Situ Synthesis of Highly Uniform Au Nanoparticles and Monitoring Protein Denaturation

Purified recombinant green fluorescent protein (GFP) expressed in E. coli was used for single-step synthesis of gold nanoparticles (Au NPs) with extraordinary size specificity in aqueous medium. The fluorescence of GFP offered a probe for concomitant changes in the protein during the course of synthesis, in addition to the monitoring of the time-dependent formation of Au NPs by the surface plasmon resonance. Reaction of AuCl(4)(-) with the protein produced spherical Au NPs having diameters ranging from 5-70 nm. Remarkably, addition of 1.0x10(-5) M AgNO(3) in the medium produced uniform spherical Au NPs with particle diameter of 2.2+/-0.5 nm. Fluorescence spectroscopic measurements suggest that during synthesis of Au NPs in absence of AgNO(3), partial denaturation of the protein occurred resulting in the lowering of fluorescence intensity. On the other hand, when the NPs were synthesized in the presence of AgNO(3) complete denaturation of the protein with complete loss of fluorescence could be observed, which was further confirmed by native and sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE). However, use of AgNO(3) only resulted neither in the formation of NPs nor had any significant effect on the fluorescence of GFP.

Algorithmic Design of Self-folding Polyhedra

Self-assembly has emerged as a paradigm for highly parallel fabrication of complex three-dimensional structures. However, there are few principles that guide a priori design, yield, and defect tolerance of self-assembling structures. We examine with experiment and theory the geometric principles that underlie self-folding of submillimeter-scale higher polyhedra from two-dimensional nets. In particular, we computationally search for nets within a large set of possibilities and then test these nets experimentally. Our main findings are that (i) compactness is a simple and effective design principle for maximizing the yield of self-folding polyhedra; and (ii) shortest paths from 2D nets to 3D polyhedra in the configuration space are important for rationalizing experimentally observed folding pathways. Our work provides a model problem amenable to experimental and theoretical analysis of design principles and pathways in self-assembly.

Waiting
simple hit counter