JoVE   
You have subscription access to articles in this section through JoVE.

  JoVE Biology

  
You have subscription access to articles in this section through JoVE.

  JoVE Neuroscience

  
You have subscription access to articles in this section through JoVE.

  JoVE Immunology and Infection

  
You have subscription access to articles in this section through JoVE.

  JoVE Clinical and Translational Medicine

  
You have subscription access to articles in this section through JoVE.

  JoVE Bioengineering

  
You have subscription access to articles in this section through JoVE.

  JoVE Applied Physics

  
You have subscription access to articles in this section through JoVE.

  JoVE Chemistry

  
You have subscription access to articles in this section through JoVE.

  JoVE Behavior

  
You have subscription access to articles in this section through JoVE.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You have subscription access to videos in this collection through JoVE.

Basic Methods in Cellular and Molecular Biology

You have subscription access to videos in this collection through JoVE.

Model Organisms I

You have subscription access to videos in this collection through JoVE.

Model Organisms II

You have subscription access to videos in this collection through JoVE.

Essentials of
Neuroscience

You have subscription access to videos in this collection through JoVE.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Clinical and Translational Medicine
Bioengineering
Applied Physics
Chemistry
Behavior
Environment
 
 
 JoVE Applied Physics

Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

1MESA+ Institute for Nanotechnology, University of Twente


JoVE 51547

Procedures are outlined to prepare segmented and coaxial nanowires via templated electrodeposition in nanopores. As examples, segmented nanowires consisting of Ag and ZnO segments, and coaxial nanowires consisting of a TiO2 shell and a Ag core were made. The nanowires were used in photocatalytic hydrogen formation experiments.

 JoVE Applied Physics

Fine-tuning the Size and Minimizing the Noise of Solid-state Nanopores

1Department of Physics, University of Ottawa, 2Ottawa-Carleton Institute of Biomedical Engineering, University of Ottawa


JoVE 51081

A methodology for preparing solid-state nanopores in solution for biomolecular translocation experiments is presented. By applying short pulses of high electric fields, the nanopore diameter can be controllably enlarged with subnanometer precision and its electrical noise characteristics significantly improved. This procedure is performed in situ using standard laboratory equipment under experimental conditions.

 JoVE Biology

Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

1Department of Pediatrics, Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill


JoVE 51694

Basic techniques and refinements of freeze-fracture processing of biological specimens and nanomaterials for examination by transmission electron microscopy are described. This technique is a preferred method for revealing ultrastructural features and specializations of biological membranes and for obtaining ultrastructural level dimensional and spatial data in materials sciences and nanotechnology products.

 JoVE Bioengineering

Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy

1Department of Physics, Worcester Polytechnic Institute, 2Department of Chemical Engineering, Worcester Polytechnic Institute


JoVE 50497

This paper demonstrates a protocol to characterize the mechanical properties of living cells by means of microindentation using an Atomic Force Microscope (AFM).

 JoVE Bioengineering

Helical Organization of Blood Coagulation Factor VIII on Lipid Nanotubes

1Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 2Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 3Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch


JoVE 51254

We present a combination of Cryo-electron microscopy, lipid nanotechnology, and structure analysis applied to resolve the membrane-bound structure of two highly homologous FVIII forms: human and porcine. The methodology developed in our laboratory to helically organize the two functional recombinant FVIII forms on negatively charged lipid nanotubes (LNT) is described.

 JoVE Applied Physics

Fabrication of Nano-engineered Transparent Conducting Oxides by Pulsed Laser Deposition

1Department of Energy and NEMAS - Center for NanoEngineered Materials and Surfaces, Politecnico di Milano, 2Center for Nano Science and Technology, Instituto Italiano di Tecnologia


JoVE 50297

We describe the experimental method to deposit nanostructured oxide thin films by nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas. By using this method Al-doped ZnO (AZO) films, from compact to hierarchically structured as nano-tree forests, can be deposited.

 JoVE Bioengineering

Microfabrication of Nanoporous Gold Patterns for Cell-material Interaction Studies

1Department of Electrical and Computer Engineering, University of California, Davis, 2Department of Chemical Engineering and Materials Science, University of California, Davis, 3Department of Biomedical Engineering, University of California, Davis


JoVE 50678

We report on techniques to micropattern nanoporous gold thin films via stencil printing and photolithography, as well as methods to culture cells on the microfabricated patterns. In addition, we describe image analysis methods to characterize morphology of the material and the cultured cells using scanning electron and fluorescence microscopy techniques.

 JoVE Bioengineering

Designing a Bio-responsive Robot from DNA Origami

1Faculty of Life Sciences and the Institute for Nanotechnology & Advanced Materials, Bar-Ilan University


JoVE 50268

DNA origami is a powerful method for fabricating precise nanoscale objects by programming the self-assembly of DNA molecules. Here, we describe how DNA origami can be utilized to design a robotic robot capable of sensing biological cues and responding by shape shifting, subsequently relayed to a desired effect.

 JoVE Immunology and Infection

Nanomechanics of Drug-target Interactions and Antibacterial Resistance Detection

1London Centre for Nanotechnology and Departments of Medicine, University College London


JoVE 50719

Acquired resistance to antibiotics is a major public healthcare problem and is presently ranked by the WHO as one of the greatest threats to human life. Here we describe the use of cantilever technology to quantify antibacterial resistance, critical to the discovery of novel and powerful agents against multidrug resistant bacteria.

 JoVE Bioengineering

Gold Nanostar Synthesis with a Silver Seed Mediated Growth Method

1Department of Physics and Astronomy, The University of Texas at San Antonio, 2Centro de Investigaciones en Optica A. C., 3Department of Biology and Neurosciences Institute, The University of Texas at San Antonio


JoVE 3570

We synthesized star shaped gold nanostars using a silver seed mediated growth method. The diameter of the nanostars ranges from 200 to 300 nm and the number of tips vary from 7 to 10. The nanoparticles have a broad surface plasmon resonance mode centered in the near infrared.

More Results...
Waiting
simple hit counter