JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Engineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Developmental Biology

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Biology 1

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Biology 2

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Developmental Biology

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Behavioral Science

You do not have subscription access to videos in this collection. Learn more about access.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Medicine
Bioengineering
Engineering
Chemistry
Behavior
Environment
Developmental Biology
 
 
 JoVE Neuroscience

A cGMP-applicable Expansion Method for Aggregates of Human Neural Stem and Progenitor Cells Derived From Pluripotent Stem Cells or Fetal Brain Tissue

1Regenerative Medicine Institute, Cedars-Sinai Medical Center


JoVE 51219

This protocol describes a novel mechanical chopping method that allows the expansion of spherical neural stem and progenitor cell aggregates without dissociation to a single cell suspension.  Maintaining cell/cell contact allows rapid and stable growth for over 40 passages.

 JoVE Biology

Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis

1NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 2Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health


JoVE 51519

Here, we present human pluripotent stem cell (hPSC) culture protocols, based on non-colony type monolayer (NCM) growth of dissociated single cells. This new method, utilizing Rho-associated kinase inhibitors or the laminin isoform 521 (LN-521), is suitable for producing large amounts of homogeneous hPSCs, genetic manipulation, and drug discovery.

 JoVE Biology

Generation of Human Cardiomyocytes: A Differentiation Protocol from Feeder-free Human Induced Pluripotent Stem Cells

1Humanitas Clinical and Research Center, Italy, 2Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR)


JoVE 50429

Pluripotent stem cells, either embryonic or induced pluripotent stem (iPS) cells, constitute a valuable source of human differentiated cells, including cardiomyocytes. Here, we will focus on cardiac induction of iPS cells, showing how to use them to obtain functional human cardiomyocytes through an embryoid bodies-based protocol.

 JoVE Developmental Biology

Derivation of Highly Purified Cardiomyocytes from Human Induced Pluripotent Stem Cells Using Small Molecule-modulated Differentiation and Subsequent Glucose Starvation

1Stanford Cardiovascular Institute, Stanford University School of Medicine, 2Institute of Stem Cell Biology and Regenerative Medicine, Cardiovascular Medicine Division, Department of Medicine, Child Health Research Institute, Stanford University School of Medicine


JoVE 52628

Here, we describe a robust protocol for human cardiomyocyte derivation that combines small molecule-modulated cardiac differentiation and glucose deprivation-mediated cardiomyocyte purification, enabling production of purified cardiomyocytes for the purposes of cardiovascular disease modeling and drug screening.

 JoVE Biology

Voltage and Calcium Dual Channel Optical Mapping of Cultured HL-1 Atrial Myocyte Monolayer

1Department of Cell and Molecular Physiology, Loyola University Chicago, 2Department of Biomedical Engineering, University of Alabama at Birmingham, 3Department of Bioengineering, Clemson University


JoVE 52542

This article describes the technique used to perform dual channel optical mapping in cultured HL-1 atrial cell monolayers. This unique protocol allows the simultaneous visualization of both calcium (Ca) and voltage (Vm) activity in the same area for the detailed detection and analysis of electrophysiological properties of culture monolayers.

More Results...
Waiting
simple hit counter