Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

インターロイキン10欠損マウスモデルにおける糞便微生物叢移植の治療的評価

Published: April 6, 2022 doi: 10.3791/63350

Summary

炎症性腸疾患(IBD)の病因には、遺伝的感受性、粘膜免疫、腸の微小生態学的環境の相互作用が関与しています。本研究では、糞便微生物叢移植をIL-10欠損マウスに適用し、結腸の炎症と心機能への影響を調べました。

Abstract

近年の微生物生態学の発展に伴い、腸内細菌と炎症性腸疾患(IBD)の関係が注目されています。蓄積された証拠は、ジスバイオティクス微生物叢がIBDの炎症プロセスの誘発または悪化に積極的な役割を果たし、健康な微生物叢をIBD患者に移すと宿主と微生物叢のコミュニケーションを回復できるため、糞便微生物叢移植(FMT)が魅力的な治療戦略であることを示唆しています。しかし、その分子メカニズムは不明であり、FMTの有効性はあまり確立されていません。したがって、IBDの動物モデルにおけるさらなる研究が必要である。この方法では、野生型C57BL/6JマウスのFMTを、大腸炎の広く使用されているマウスモデルであるIL-10欠損マウスに適用しました。この研究では、ドナーマウスから糞便ペレットを収集し、糞便溶液/懸濁液を作成し、糞便溶液を投与し、病気を監視する方法について詳しく説明します。FMTはIL-10ノックアウトマウスの心機能障害を大幅に軽減し、IBD管理の治療の可能性を強調していることがわかりました。

Introduction

ヒトの腸内微小生態系は非常に複雑で、健常人の腸内には1000種以上の細菌が存在する1。腸内細菌叢は、腸の正常な生理機能と免疫応答の維持に関与しており、人体と不可分の関係にあります。蓄積された証拠は、腸内細菌叢が寄生虫のグループだけでなく、人体の一部である最後の人間の臓器を構成することを示唆しています2。腸内細菌叢、その代謝物、および幼少期に確立された宿主免疫系の間の「健全な」共生関係は、腸の恒常性を維持するために重要です。慢性炎症などのいくつかの異常な状態では、体の内部および外部環境の変化が腸の恒常性を深刻に破壊し、腸の微生物群集の持続的な不均衡を引き起こします。実際、食事、薬物、病原体などの複数の環境要因にさらされると、微生物叢の変化につながる可能性があります。

嚥下障害は、炎症性腸疾患(IBD)、過敏性腸症候群(IBS)、偽膜性腸炎などのさまざまな腸疾患の病因、および心血管疾患、肥満、アレルギーなどの腸外疾患のリストの増加に関連しています4。微生物叢プロファイリングにより、IBD患者は細菌の多様性が劇的に減少し、特定の細菌株の集団に著しい変化があることが明らかになりました5,6。これらの研究では、IBD患者では、クモ膜科バクテロイデスは少ないが、プロテオバクテリア放線菌が多いことが示されました。IBDの病因は、異常な腸内細菌叢、調節不全の免疫応答、環境上の課題、遺伝的変異など、さまざまな病原性因子に関連していると考えられています7。豊富な証拠は、腸内細菌がIBD 8,9の開始および適用段階で役割を果たすことを示唆しており、腸内細菌叢症の矯正がIBDの治療および/または維持治療のための新しいアプローチを表す可能性があることを示しています。

糞便微生物叢移植(FMT)のプロトタイプは古代中国で始まりました10。1958年、アイズマン博士と彼の同僚は、浣腸を介して健康なドナーからの糞便で重度の偽膜性腸炎の4例を治療することに成功し、人間の糞便を使用して人間の病気を治療する現代西洋医学の新しい章を開きました11クロストリジウム・ディフィシル 感染症(CDI)が偽膜性腸炎の主な原因であることが判明しており12 、FMTはCDIの治療に非常に効果的です。過去8年間で、FMTは再発性CDI13の治療のための標準治療療法になり、IBDなどの他の障害におけるFMTの役割を調査するさらなる研究を促しています。過去20年間、多数の症例報告とコホート研究がIBD14患者におけるFMTの使用を文書化しています。12件の試験を含むメタアナリシスでは、クローン病(CD)患者の62%がFMT後に臨床的寛解を達成し、CD患者の69%が臨床反応を示した15。これらの有望な発見にもかかわらず、IBDの管理におけるFMTの役割は依然として不明であり、FMTが腸の炎症を改善するメカニズムはほとんど理解されていません。FMTが診療所でのIBDの治療オプションの現在の兵器庫に参加する前に、さらなる調査が必要です。

このプロトコルでは、離乳後に自然に大腸炎を発症し、IBD 16,17,18の多因子性を反映するゴールドスタンダードとして機能しているIL-10-/-マウスにFMTを適用しました。IL-10-/-マウスは、IBD患者と同様の分子的および組織学的特徴を示し、患者と同様に抗TNFα療法で疾患を改善できるため、IBD病因を解剖するために広く使用されています16。老化したIL10-/-マウス(>9ヶ月齢)は、年齢が一致した野生型マウスと比較して心臓のサイズが大きく、心機能障害があり19、大腸炎誘発性心疾患を研究するための優れたモデルとなっています。ただし、デキストラン硫酸ナトリウムモデルやT細胞誘発大腸炎モデルなど、大腸炎の他のマウスモデルも使用できます。経口強制経口投与で糞便懸濁液を投与し、ヒトの浣腸よりも効果的で優れた経路であることが証明されました20

Subscription Required. Please recommend JoVE to your librarian.

Protocol

動物に対して行われたすべての手順は、ガルベストンのテキサス大学医学部の施設動物管理および使用委員会によって承認されました(プロトコル#1512071A)。

1.新鮮な糞便ペレットの収集

  1. 滅菌ペーパータオル、鈍端鉗子、および50mLの円錐管を準備します。
    1. ペーパータオルと鉗子を別々のオートクレーブバッグに入れ、180°Cの乾熱で30分間オートクレーブします。滅菌コニカルチューブも使用してください。円錐形のチューブの重量を量り、チューブにその重量を書き留めます。
  2. 動物室のバイオセーフティキャビネットの電源を入れます。
  3. 寝具なしでオートクレーブ滅菌した清潔なマウスケージを取り、バイオセーフティキャビネットに入れます。カバーとフードラックを取り外し、キャビネット内に置きます。
  4. 滅菌ペーパータオルをケージの底に置き、金属製ラックをケージの上に戻します。
  5. 年齢が一致した糞便ドナーを特定し、マウスケージをバイオセーフティキャビネットに入れます。ケージを開き、ドナーマウス(C57BL / 6J)の尾をそっとつかみ、クリーンケージの上にある金属製のラックに置きます。
  6. ケージカバーをラックの上に置き、動物が排便するのを待ちます。
    注意: 数匹のマウスリッターを同時にラックに置きます。
  7. 糞便ペレットを収集し、滅菌済みの50 mLコニカルチューブに入れます。性別でペレットをプールします。男性と女性から集めた糞便ペレットを混ぜないでください。
  8. チューブを再度重量を量り、糞便ペレットの重量を計算します。

2.糞便懸濁液の調製

  1. 滅菌溶液(生理食塩水中の10%グリセロール)を調製する。
  2. 糞便ペレット1グラムごとに10mLの10%グリセロール/生理食塩水を円錐管に追加します。
    注意: 必要に応じて、溶液容量を20mLに増やします。この研究では、各ペレットに1 mLの溶液(5〜10 mg)も使用しました。
  3. ベンチトップホモジナイザーまたはヒュームフード内のブレンダーを使用して混合物を低速で均質化し、糞便を再懸濁します(3 X 30秒)。
  4. 糞便懸濁液を2層の滅菌綿ガーゼ(10.2 cm x 10.2 cm)でろ過します。ろ液を冷蔵庫に一時的に最大6時間保管するか、滅菌極低温バイアルに包装して-80°Cの冷凍庫に保管します。
  5. 標準的な手順に従って、ホモジナイザーまたはブレンダーを完全に清掃します。

3.経口強制経口投与による糞便懸濁液の投与

  1. 凍結サンプルを使用する場合は、凍結糞便懸濁液を氷上で解凍します。解凍した糞便懸濁液をボルテックスで混合します。
  2. 新鮮または解凍した糞便懸濁液を1 mLシリンジに移します。
    注:各マウスは合計200μLの糞便懸濁液を受け取り、対照群の各IL-10-/- マウスは200μLの10%グリセロール/生理食塩水17を取得します。
  3. マウスの体重を量り、適切な経管栄養針のサイズと最大投与量を選択します。
    注:体重が20〜25グラムのマウスの場合、20 G 3.81 cmの湾曲した経管栄養針と2.25 mmのボールを使用します。詳しくは gavageneedle.com をご確認ください。
  4. マウスの鼻の先端から剣状突起(胸骨の底)までの長さを測定して、経管栄養針をテストします。シリンジに10%グリセロール/生理食塩水または糞便懸濁液を満たし、シリンジと針内の気泡を取り除きます。
    注意: 針が長さよりも長い場合は、針のシャフト/チューブの鼻の高さに印を付けます。胃の穿孔を防ぐために、そのポイントを過ぎて動物に針/チューブを通過させないでください。.
  5. マウスケージを1つバイオセーフティキャビネットに入れ、プラスチック製ケージカバーを取り外して、金属製ラックをそのままにしておきます。
  6. 1匹のマウスの尻尾をつかみ、金属製のラックに置きます。片手でマウスの尾を持ち、もう一方の手の親指と中指を使って、肩の上の皮膚をつかんで動物を拘束します。このようにして、前足が横に伸び、前足が針を押し出すのを防ぎます。動物の頭をゆっくりと後方に伸ばし、片手で頭を所定の位置に保持します。
    注意: 実験に進む前に、実験者が完全に自信を持つまでマウスの取り扱いを練習してください。
  7. 経管針を口の中の舌の上に置きます。針が食道に到達するまで、上口蓋に沿ってゆっくりと進みます。一気に針をスムーズに通します。抵抗が感じられる場合は、針を無理に押し込まないでください。針を取り出して、もう一度やり直してください。
  8. 針が適切に配置され、確認されたら、針に取り付けられたシリンジを押してゆっくりと材料を投与します。食道を破裂させる恐れがあるため、針を回転させたり、針を前方に押したりしないでください。投与後、針をそっと引き抜きます。.
  9. マウスをホームケージに戻します。呼吸困難や苦痛の兆候を探して、動物を5〜10分間監視します。FMT後12〜24時間の間にマウスを再度監視します。.

4.病気のモニタリングと安楽死

  1. 潜伏性糞便および/または大腸内視鏡検査によるIBD発症についてマウスを縦方向に監視する21。経胸郭心エコー検査による心機能の評価22,23.
  2. イソフルラン(1%〜4%)による麻酔の深い面下での断頭によって動物を安楽死させる。
  3. 抗凝固剤と遠心分離機を含む微量遠心チューブに血液を1000〜2000 x g で冷蔵遠心分離機(4°C)で10分間収集します。上清、指定された血漿を-80°Cの冷凍庫に保存します。
  4. 安楽死させたら、組織病理学的分析(H&E染色)25 のためにスイスロール法24を使用してマウス結腸を調製します。
  5. 酵素免疫測定法(EIA)キット23を用いて血漿中のB型ナトリウム利尿ペプチド(BNP)を測定する。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

健康なドナーFMTを2ヶ月齢のC57BL/6J野生型(WT)およびIL-10ノックアウトマウスに3回(月に1回、3ヶ月間)実施した。年齢を一致させたC57BL / 6Jマウス(年齢差は<2か月)を糞便ドナーとして使用し、毎回新鮮な糞便ペレットを使用しました。EIAアッセイは、BNPがIL-10欠損マウスの血漿中で著しく上昇し、健康なドナーFMTがBNPレベルの増加を有意に緩和することが明らかになりました(図1A、n = 5、 p < 0.05)。心エコー検査では、WTマウスと比較して、IL-10-/- マウスの左心室駆出率(LVEF)の有意な減少が検出されました。この減少はFMTによって有意に解消された(図1B、n = 5、 p < 0.05)。これらの結果は、健康なドナーFMTが大腸炎誘発性心機能障害を軽減したことを示唆しています。

Figure 1
図 1.BNPのアップレギュレーションとLVEFのダウンレギュレーションは、IL-10ノックアウトマウスの糞便微生物叢移植(FMT)によって軽減されました。 (A)ビヒクル(Veh)またはFMTで治療された野生型(WT)およびIL-10ノックアウト(KO)マウスにおける血漿BNP濃度(pg / mL)。(B)FMTの有無にかかわらず治療されたWTおよびIL-10 KOマウスのLVEF。結果は、SD±平均値として提示した(n = 5)。* p < 0.05 対 ビヒクル(Veh)で処置したWTマウス。# p < 0.05対Vehで処置したIL-10 KOマウス。 この図の拡大版を表示するには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

FMTは、共生微生物叢の嚥下障害がIBD、肥満、糖尿病、自閉症、心臓病、癌などの複数のヒト疾患の病因に関与しているため、革新的な治験治療として近年さまざまな疾患の治療で話題になっています26。そのメカニズムは解明されていませんが、FMTは新たな生物フローラを構築し、残存菌の損失を防ぐことで機能していると考えられています。本明細書に提示された方法は、送達経路として経口経管栄養を採用し、これは有効であることが証明されている27。経口投与が最も便利で経済的であり、ほとんどの患者に好まれているため、経口経路を選択しました。さらに、経口カプセル剤によるFMTは、臨床試験28において再発性CDIを治療するための有効なアプローチであることが見出されている。他の一般的な上部消化管送達経路は、経鼻胃管、鼻空腸管、空腸瘻造設管、および食道胃十二指腸内視鏡検査です。一般的な下部消化管送達経路には、結腸内視鏡検査、結腸経内視鏡的経腸チューブ(TET)、および直腸浣腸が含まれます。しかし、FMTの最適ルートは依然として不確実である20。現在、上部消化管投与が最も適切であると考えられています29が、すべての患者に適した理想的な経路はありません。

糞便ペレット収集に使用されるツールと容器は、相互汚染を防ぐために無菌である必要があります。男性と女性から集められた糞便ペレットは、免疫力の性差のために混合されるべきではありません。動物モデルとヒトでは、雌雄間で微生物叢に違いがあります30。これらの性差は、局所消化管炎症、宿主免疫、および一連の炎症性疾患に対する感受性に性依存的な変化をもたらすことがよくあります31。糞便ペレットは、滅菌リン酸緩衝生理食塩水または10〜50%グリセロール/通常生理食塩水中で均質化することができ、10%グリセロールが広く採用されています29。この研究では、10%、20%、および50%のグリセロール/生理食塩水が使用され、それらはすべて凍結条件下で良好な細菌保存を提供しました。均質化は、このプロセスで生成される呼吸可能なエアロゾルへの曝露を最小限に抑えるために、低速でヒュームフード内で行う必要があります。糞便懸濁液は、2層の滅菌ガーゼまたは20μmナイロンフィルターでろ過して、経管針をブロックする可能性のある大きな粒子を取り除く必要があります。すぐに使用するためにろ過された糞便懸濁液は冷蔵庫に入れ、残りは分注して-80°Cの冷凍庫に保管することができます。糞便が人間のドナーから得られる場合、凍結は特に必要です。メタアナリシスでは、再発性CDI32,33,34の患者において、凍結FMTが新鮮なFMTと同じくらい効果的であることがわかっています。しかし、Cuiらはまた、FMT後6ヶ月の時点で、新鮮な糞便細菌群のCD患者の方が凍結糞便細菌群よりも奏効率が26.7%高いことを観察しており35、場合によっては凍結FMTよりも新鮮なFMTがより良い選択であることを示唆しています。

FMT注入の最適な用量および頻度は、この段階では不明のままです。研究によると、単一のFMT治療に対する臨床反応の期間は一過性であり、レシピエントの腸内細菌叢の根本的な変化を誘発するには不十分であり、CD寛解を維持するためには連続的なFMT療法が必要であることがわかっています36,37。FMTを月1回,3カ月連続で実施し,良好な治療効果を示した。進行中の研究では、IL-10欠損マウスのグループで12か月間毎月FMTを実行し、 研究の終わりに腸内細菌叢、腸の炎症、および心機能を評価します。逐次FMTは、単一のFMTよりも優れた治療効果を示すと予想しています。

FMTは腸内細菌叢の乱れを修復する大きな可能性を秘めており、安全性データは出現していますが38,39、ヒト疾患の治療のためのFMTの安全性、投与方法、細菌量、投与頻度、および長期予後に関する医学的証拠はまだ不足しています。2020年3月12日、FDAは、FMTが重篤または生命を脅かす感染症の潜在的なリスクに関連しているという安全警告を発行しました40。感染症は腸病原性大腸菌と志賀毒素産生大腸菌によって引き起こされ、FMT製品は米国に拠点を置く便銀行会社から供給されました。したがって、患者の治療法としてのFMTの使用を真に理解するには、動物におけるさらなる機構研究と長期観察が依然として必要です。げっ歯類のFMTは、マイクロバイオーム研究における強力なツールであり続け、最終的にはFMT手順を他の合成薬よりも毒性の低い簡単にアクセスできる治療法にする可能性があります。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者は、競合する利益がないことを宣言します。

Acknowledgments

この研究の一部は、国立衛生研究所からの助成金(R01 HL152683およびR21 AI126097からQ.Li)および米国心臓協会の助成金17GRNT33460395(Q.Li)(heart.org)によってサポートされました。

Materials

Name Company Catalog Number Comments
BD Syringe, 1 mL Fisher Scientific 14-829-10F
Blunt end forceps Knipex 926443
Brain natriuretic peptide EIA kit Sigma RAB0386
C57BL/6J mice Jackson Lab 000664
Centrifuge Eppendorf 5415R
Conical tubes ThermoFisher 339650
Curved feeding Needles Kent Scientific FNC-20-1.5-2
GLH-115 homogenizer Omni International GLH-115
Glycerol MilliporeSigma G5516
IL-10 knockout mice Jackson Lab 004366
Isoflurane Piramal Critical care NDC66794-017-10
USP normal saline Grainger 6280
Vaporizer Euthanex Corp. EZ-108SA

DOWNLOAD MATERIALS LIST

References

  1. D'Argenio, V., Salvatore, F. The role of the gut microbiome in the healthy adult status. Clinica Chimica Acta. 451, Pt A 97-102 (2015).
  2. Baquero, F., Nombela, C. The microbiome as a human organ. Clinical Microbiology and Infection. 18, Suppl 4 2-4 (2012).
  3. Hawrelak, J. A., Myers, S. P. The causes of intestinal dysbiosis: a review. Alternative Medcine Review. 9 (2), 180-197 (2004).
  4. Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., Owen, L. J. Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease. 26 (1), 26191 (2015).
  5. Ma, H. Q., Yu, T. T., Zhao, X. J., Zhang, Y., Zhang, H. J. Fecal microbial dysbiosis in Chinese patients with inflammatory bowel disease. World Journal of Gastroenterology. 24 (13), 1464-1477 (2018).
  6. Chu, Y., et al. Specific changes of enteric mycobiota and virome in inflammatory bowel disease. Journal of Digestive Diseases. 19 (1), 2-7 (2018).
  7. Manichanh, C., Borruel, N., Casellas, F., Guarner, F. The gut microbiota in IBD. Nature reviews Gastroenterology and Hepatology. 9 (10), 599-608 (2012).
  8. Podolsky, D. K. Inflammatory bowel disease. The New England Journal of Medicine. 347 (6), 417-429 (2002).
  9. Tamboli, C. P., Neut, C., Desreumaux, P., Colombel, J. F. Dysbiosis in inflammatory bowel disease. Gut. 53 (1), 1-4 (2004).
  10. Shi, Y. C., Yang, Y. S. Fecal microbiota transplantation: Current status and challenges in China. JGH Open: An Open Access Journal of Gastroenterology and Hepatology. 2 (4), 114-116 (2018).
  11. Markley, J. C., Carson, R. P., Holzer, C. E. Pseudomembranous enterocolitis: A clinico pathologic study of fourteen cases with a common etiologic factor. AMA Archives of Surgery. 77 (3), 452-461 (1958).
  12. Wilcox, M. H. Clostridium difficile infection and pseudomembranous colitis. Best Practice and Research Clinical Gastroenterology. 17 (3), 475-493 (2003).
  13. Kelly, C. R., de Leon, L., Jasutkar, N. Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results. Journal of Clinical Gastroenterology. 46 (2), 145-149 (2012).
  14. Borody, T. J., Warren, E. F., Leis, S., Surace, R., Ashman, O. Treatment of ulcerative colitis using fecal bacteriotherapy. Journal of Clinical Gastroenterology. 37 (1), 42-47 (2003).
  15. Cheng, F., Huang, Z., Wei, W., Li, Z. Fecal microbiota transplantation for Crohn's disease: a systematic review and meta-analysis. Techniques in Coloproctology. 25 (5), 495-504 (2021).
  16. Scheinin, T., Butler, D. M., Salway, F., Scallon, B., Feldmann, M. Validation of the interleukin-10 knockout mouse model of colitis: antitumour necrosis factor-antibodies suppress the progression of colitis. Clinical and Experimental Immunology. 133 (1), 38-43 (2003).
  17. Keubler, L. M., Buettner, M., Hager, C., Bleich, A. A multihit model: Colitis lessons from the interleukin-10-deficient mouse. Inflammatory Bowel Diseases. 21 (8), 1967-1975 (2015).
  18. Kiesler, P., Fuss, I. J., Strober, W. Experimental models of inflammatory bowel diseases. Cellular and Molecular Gastroenterology and Hepatology. 1 (2), 154-170 (2015).
  19. Sikka, G., et al. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age. Experimental Gerontology. 48 (2), 128-135 (2013).
  20. Fecal microbiota transplantation-standardization study group. Nanjing consensus on methodology of washed microbiota transplantation. Chinese Medical Journal (Engl). 133 (19), 2330-2332 (2020).
  21. Kodani, T., et al. Flexible colonoscopy in mice to evaluate the severity of colitis and colorectal tumors using a validated endoscopic scoring system). Journal of Visualized Experiments: JoVE. (80), e50843 (2013).
  22. Cheng, H. -W., et al. Assessment of right ventricular structure and function in mouse model of pulmonary artery constriction by transthoracic echocardiography. Journal of Visualized Experiments: JoVE. (84), e51041 (2014).
  23. Tang, Y., et al. Chronic colitis upregulates microRNAs suppressing brain-derived neurotrophic factor in the adult heart. PLoS One. 16 (9), 0257280 (2021).
  24. Orner, G. A., et al. Suppression of tumorigenesis in the Apc(min) mouse: down-regulation of beta-catenin signaling by a combination of tea plus sulindac. Carcinogenesis. 24 (2), 263-267 (2003).
  25. Kline, K. T., et al. Neonatal injury increases gut permeability by epigenetically suppressing E-Cadherin in adulthood. The Journal of Immunology. 204 (4), 980-989 (2020).
  26. DeGruttola, A. K., Low, D., Mizoguchi, A., Mizoguchi, E. Current understanding of dysbiosis in disease in human and animal models. Inflammatory Bowel Diseases. 22 (5), 1137-1150 (2016).
  27. Chevalier, G., et al. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nature Communications. 11 (1), 6363 (2020).
  28. Kao, D., et al. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: A randomized clinical trial. JAMA. 318 (20), 1985-1993 (2017).
  29. Cammarota, G., et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut. 68 (12), 2111-2121 (2019).
  30. Vemuri, R., et al. The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Seminar Immunopathology. 41 (2), 265-275 (2019).
  31. Wilkinson, N. M., Chen, H. -C., Lechner, M. G., Su, M. A. Sex differences in immunity. Annual Review of Immunology. , (2022).
  32. Lee, C. H., et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent clostridium difficile infection: A randomized clinical trial. JAMA. 315 (2), 142-149 (2016).
  33. Hamilton, M. J., Weingarden, A. R., Sadowsky, M. J., Khoruts, A. Standardized frozen preparation for transplantation of fecal microbiota for recurrent clostridium difficile infection. American Journal of Gastroenterology. 107 (5), 761-767 (2012).
  34. Tang, G., Yin, W., Liu, W. Is frozen fecal microbiota transplantation as effective as fresh fecal microbiota transplantation in patients with recurrent or refractory Clostridium difficile infection: A meta-analysis. Diagnostic Microbiology and Infectious Disease. 88 (4), 322-329 (2017).
  35. Cui, B., et al. Fecal microbiota transplantation through mid-gut for refractory Crohn's disease: safety, feasibility, and efficacy trial results. Journal of Gastroenterology and Hepatology. 30 (1), 51-58 (2015).
  36. Li, P., et al. Timing for the second fecal microbiota transplantation to maintain the long-term benefit from the first treatment for Crohn's disease. Applied Microbiology and Biotechnology. 103 (1), 349-360 (2019).
  37. Moayyedi, P. Update on fecal microbiota transplantation in patients with inflammatory bowel disease. Gastroenterology and Hepatology. 14 (5), 319 (2018).
  38. Saha, S., Mara, K., Pardi, D. S., Khanna, S. Long-term safety of fecal microbiota transplantation for recurrent clostridioides difficile infection. Gastroenterology. 160 (6), 1961-1969 (2021).
  39. Perler, B. K., et al. Long-term efficacy and safety of fecal microbiota transplantation for treatment of recurrent clostridioides difficile infection. Journal of Clinical Gastroenterology. 54 (8), 701-706 (2020).
  40. Safety alert regarding use of fecal microbiota for transplantation and risk of serious adverse events likely due to transmission of pathogenic organisms. FDA. , Available from: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/safety-alert-regarding-use-fecal-microbiota-tramsplantation-and-risk-serious-adverse-events-likely (2020).

Tags

免疫学と感染症、第182号、炎症性腸疾患、糞便微生物叢移植、潰瘍性大腸炎、クローン病、嚥下障害、インターロイキン10
インターロイキン10欠損マウスモデルにおける糞便微生物叢移植の治療的評価
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Xiao, Y., Zhong, X. S., Liu, X., Li, More

Xiao, Y., Zhong, X. S., Liu, X., Li, Q. Therapeutic Evaluation of Fecal Microbiota Transplantation in an Interleukin 10-Deficient Mouse Model. J. Vis. Exp. (182), e63350, doi:10.3791/63350 (2022).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter