Summary

转基因玉米中黄曲霉生长和黄曲霉毒素的产生表达表达.

Published: February 15, 2019
doi:

Summary

本文提出了一种分析具有抗真菌蛋白的玉米籽粒黄曲霉生长和黄曲霉毒素生产的方案。 利用 gfp 表达的黄曲霉菌株, 实时监测了成熟籽粒中真菌的感染和传播情况。该检测快速、可靠且重现性好。

Abstract

食品和饲料作物中的黄曲霉毒素污染是全世界面临的主要挑战。黄曲霉( 黄曲霉)真菌产生的黄曲霉是一种强效致癌物质, 除了对人类和动物健康构成严重威胁外, 还能大幅降低玉米和花生等其他盛产石油作物的作物价值。不同的方法, 包括传统育种, 抗性相关蛋白的转基因表达, 以及 rna 干扰 (rna) 为基础的宿主诱导基因沉默的关键a. 黄酮基因靶材, 正在评估增加易感作物中的黄曲霉毒素耐药性。过去的研究表明α-淀粉酶在黄曲霉发病机制和黄曲霉毒素生产中的重要作用, 这表明这种基因酶是减少黄曲霉生长和黄曲霉毒素生产的潜在目标。在这方面, 目前的研究是为了评估玉米中一种乳突状蛋白 (ail) 对黄曲霉的异源表达 (在本构的 camv 35s启动子的控制下)。ailp 是一种-kDa 蛋白, 是黄曲霉α-淀粉酶的竞争抑制剂, 属于普通豆中的凝集素-arcelin-α-淀粉酶抑制剂蛋白家族。在目前的研究之前的体外研究已经证明了自吧升在抑制黄曲霉α-淀粉酶活性和真菌生长方面的作用。采用 gfp 表达的黄曲霉菌株对成熟籽粒的真菌生长和黄曲霉毒素的产生进行了实时监测。这种核筛选试验 (ksa) 是非常简单的建立, 并提供可靠和可重复的数据感染和传播的程度, 可以量化的种质和转基因线的评估。gfp 菌株的荧光与真菌生长密切相关, 进而与黄曲霉毒素值密切相关。 目前工作的目标是在玉米等具有商业重要性的作物上落实这一先前的知识, 以提高黄曲霉毒素的抗性。我们的结果显示, 在 ailp 表达转基因玉米籽粒中, 黄曲霉的生长减少了 35%–72%, 进而转化为黄曲霉毒素水平下降 62%-88%。

Introduction

真菌属、曲霉菌、镰刀菌、青霉素、黄曲霉霉菌毒素污染是世界范围内种植的 1,2,3种食品和饲料作物的主要问题. 在这些植物致病性真菌中,曲霉菌对作物价值和人类及动物健康的不良影响最大。黄曲霉(黄曲霉) 是一种机会性植物病原体, 感染石油丰富的作物, 如玉米, 棉籽和花生, 并产生强效致癌物质, 黄曲霉毒素, 以及许多有毒的次生代谢物 (sm)。玉米是世界上种植的一种重要食品和饲料作物, 极易受到黄曲霉的污染。黄曲霉毒素污染对玉米损失和贬值的经济影响在美国可能高达 $686.6/年2随着全球气候的预测, 黄曲霉毒素的影响可能会给玉米带来更大的经济损失。估计在不久的将来为1.68 亿美元.鉴于黄曲霉毒素对人类和牲畜的不利经济和健康影响, 收获前控制玉米黄曲霉毒素可能是防止食品和饲料产品中黄曲霉毒素污染的最有效方法。

玉米黄曲霉毒素耐药性的主要收获前控制方法在过去几十年中得到了广泛的应用, 主要是通过育种, 这需要大量的时间4。近年来, 生物控制在大规模野外应用 56 中的黄曲霉毒素还原取得了一定的成功。除了生物控制外, 通过 rnai 应用尖端分子工具, 如 “宿主诱导基因沉默” (higs), 以及抗性相关蛋白的转基因表达, 在减少黄曲霉生长和黄曲霉毒素方面取得了一定的成功。在小型实验室和实地研究中生产。这些方法目前正在优化, 除了确定新的潜在的a. 黄酮基因目标, 为未来的操作。

除了直接参与霉菌毒素生产的基因作为转基因控制策略的潜在靶点外, 真菌淀粉酶在维持早期成功的发病机制和霉菌毒素的产生方面发挥着至关重要的作用宿主植物感染。几个例子包括百合 (生姜根茎腐病的因果剂)、香菇(菜花枯萎病的因果剂), 在那里观察到致病性与α-淀粉酶表达和活性之间的正相关7,8。通过基因敲除或敲除方法抑制α-淀粉酶活性对真菌生长和毒素产生有负面影响。一种α-淀粉酶敲除突变体在淀粉基板或脱胶玉米果仁9上生长时, 无法产生黄曲霉毒素.同样, 在黄萎病中, α-淀粉酶敲除菌株在玉米果仁感染 10期间未能产生富莫尼辛 b1 (霉菌毒素).在最近的一项研究中, gilbert 等人 (2018年) 表明, 通过 higs 对黄曲霉α-淀粉酶的 rnai 表达进行的 rnai 敲除, 可显著降低玉米籽粒感染期间黄曲霉的生长和黄曲霉毒素的产生 11.

α-淀粉酶活性的特定抑制剂也产生了类似于α-淀粉酶表达的下调结果。关于α-淀粉酶抑制剂在真菌抗真菌作用的第一份报告来自于对抗黄酮类化合物的玉米系14-kda 胰蛋白酶α-淀粉酶抑制剂的分离和表征。fakhoury 和 woloshuk 进一步筛选了数百种植物, 从 lablab pureus l. 13 种子中鉴定出一种 36 kda α-淀粉酶抑制剂样蛋白 (ailp). ailp 的肽序列类似于普通豆 14,15 中报道的属于凝集素-arcelin-α-淀粉酶抑制剂家族凝集素。纯化的 ail 对哺乳动物胰蛋白酶没有任何抑制作用, 进一步的体外表征显示出显著抑制黄曲霉的生长和圆锥形萌发 13.这里提供的报告清楚地表明, α-淀粉酶可以作为控制方法的目标, 以限制依赖淀粉动员 (通过α-淀粉酶活性) 和获取可溶性糖作为能源在与宿主植物的致病性相互作用。

众所周知, α-淀粉酶在a.黄酮致病性91011中至关重要, 并考虑到 ilp 作为一种有效的抗 a.黄酮类药物 (α-淀粉酶抑制剂/抗生长)重要性,在本构 camv 35s 启动子下, 我们产生了表达 lablab ailp 基因的转基因玉米植株。目的探讨这种α-淀粉酶抑制剂在玉米籽粒感染过程中是否能有效对抗黄曲霉的发病机制和黄曲霉毒素的产生。结果表明, 转基因玉米籽粒在籽粒感染过程中, 其含量呈 ilp, 显著降低了黄曲霉的生长和黄曲霉毒素的产生。

Protocol

1. 质粒结构和玉米转化 pcr 利用引物 5 ‘-ttatatgatgatgatgcctccc-3 ‘ 和 5 ‘-atactggggggggggggggggtactagtagtagtagtagtagtagtagg-3 ‘ ‘ 对 lablab ailp进行扩增。pcr 条件包括在98°c 下的初始变性步骤 30秒 (步骤 1), 然后是98°c 下的变性 10秒 (步骤 2), 55°c 退火 30秒 (步骤 3), 72°c 的伸长率为 20秒 (步骤 4), 步骤2至步骤4的31个周期, 最后的伸长率步骤在 72°c 5分钟, 克隆 pcr 产品到一个修改后的 pcambia 1, 300 矢量使用xbai 和psti 限制点。对最终的植物目标载体进行序列序列, 以确定克隆的 ailp基因在载体中的方向和序列。 转换农杆菌菌株 eha101 与最终矢量构造 (图 1) 如前面所述16。 使用含有最终植物目的地载体的转化农杆菌转化未成熟的玉米 (zea mays l. hi-ii) 胚胎 (在爱荷华州立大学植物转化设施进行) 16。 在温室中生长 t0植物 (26–29°c; 16/18h 光周期加高压 na-late), 并反复自花授粉, 获得 t6 代, 以实现转基因性状的纯合性。 2. 孢子萌发试验 收获叶片样品, 储存在-80°c。用液氮用砂浆和茎研磨叶片样品。在2毫升微离心管中称量0.5 克, 加入17μl 蛋白酶抑制剂, 并将管放在冰上。 离心管 10分钟, 16, 000 x g。将225μl 的植物提取物转移到 0.5 ml 的微离心管, 并放置在冰上。 在15毫升的离心管中, 在1% 的马铃薯葡萄糖汤 (w/v) 中制备5毫升黄曲霉Aspergillus 孢子悬浮液。涡流和调整孢子浓度为 105 孢子/血细胞计。注意:黄曲霉产生黄曲霉毒素, 所有与这种真菌的工作都应在生物安全柜进行。 在28°c 的 pdb 中孵化, 直到培养达到50% 的孢子萌发起始, 这表明孢子膨胀。 涡流和脂肪25μl 孢子溶液的225μl 植物提取物。在28°c 时, 间歇性晃动, 将样品加氢20小时。 在显微镜幻灯片上倾斜25μl 的孢子溶液, 并使用数码相机软件测量胚管孢子的长度。每行至少使用20个复制测量值。注: 在此阶段, 将所有培养物置于 4°c, 以阻止菌落生长, 直到准备数数。 3. 内核筛选检测 (ksa) 通过将4个卡扣帽 (22 毫米) 粘合在 60 x 15 毫米培养皿中, 构建 ksa 盖帽。在使用瓶盖之前, 请让胶水干燥 48 h。每个 ksa 上限构成一个代表 (图 2)。 在无菌生物安全柜中, 用70% 乙醇喷洒方形生物测定托盘 (24 厘米 x 24 厘米):h2o(v/v), 让空气干燥。在纸盒中加入无菌色谱纸。用70% 乙醇喷洒 9 ksa 瓶盖, 让空气干燥, 并放置在生物测定托盘中。 对于正在测试的每一条转基因玉米线, 选择20个未受损的玉米, 并放置在一个50毫升的离心管中。加入70% 乙醇, 让坐4分钟。在灭菌过程中轻轻摇晃管子。在无菌去离子化 h2o 中倒出乙醇并冲洗三次核. 从 v8 培养基上生长的6天的培养物 (5% v8 汁 , 2% 琼脂, ph 5.2) 中制备黄曲霉 Aspergillus 17 孢子悬浮液。 加入20ml 无菌 0.02% triton x-100/去电离 h2o (v2), 并用无菌循环报废孢子.将接种器移开, 放在300毫升的无菌烧杯中。 准备5倍稀释与 0.02% triton x-100, 然后执行孢子计数与血细胞计。如有必要, 再次稀释以获得浓度为 4 x10 6 孢子的 100 ml。 将果仁放入无菌300毫升烧杯中, 并配有搅拌杆。在烧杯上加接种。注意: 在接种过程中添加果仁会导致溶液飞溅。将烧杯放在搅拌盘上3分钟。3分钟后, 将接种器倒进一个空烧杯中。 使用钳子, 将果仁放入生物测定盘 (1 角/帽)。在每个生物测定托盘的底部加入30毫升去离子水, 在31°c 的黑暗中孵育7天。 准备摄影的内核。 从每条线中留出4个内核进行微观分析和摄影。注: 在完成摄影之前, 内核可以在4°c 下存储不超过5天。 在接种7天的黄曲霉后, 拍摄内核的照片 (图 3)。 用软组织和去离子水清洁内核的外部。执行内核的纵向部分, 并立即在荧光显微镜下拍照。 准备内核进行分析。 用软组织和去离子水清洁剩余内核的外部。 将4个内核 (构成1个代表) 放置在一个包含2个不锈钢球的 15 ml 螺帽聚碳酸酯小瓶中。立即将小瓶冷冻在液氮中, 并储存在-80°c, 直到进一步加工和分析。 从-80°c 冰柜中取出小瓶, 并在 1, 500 转/分的时间内在均质机中磨取内核3分钟。注: 用液氮冷冻果仁。 4. 转基因玉米籽粒的 pcr 筛选 根据制造商的说明, 使用 dna 分离试剂盒从感染a. 黄叶酒的玉米粉中分离出基因组 dna (gdna)。简单地说, 将280μl 缓冲液 f、20μl 蛋白酶和3μl 二硫醇 (dtt) 添加到10-15 毫克的玉米角化。在热敏器中孵化和晃动 (56°c, 1200 转/分, 30分钟)。以 10, 000 x g 离心 1分钟, 并将明确的上清液转移到平衡的柱。在室温下培养 3分钟, 在 700 x g下离心 1分钟, 以清除 gdna。 以0.8 微米的提取 gdna 为例, 使用 pcr 试剂盒为每个样品建立 20μl pcr 反应。按照制造商协议中的建议遵循热循环条件。pcr 条件包括在98°c 下的初始变性步骤 5分钟 (步骤 1), 然后在98°c 下变性 5秒 (步骤 2), 在55°c 退火 5秒 (步骤 3), 在72°c 下的伸长率为 20秒 (步骤 4), 步骤2至步骤4的40个周期, 最后的伸长率步骤在72°c 下 1分钟 (步骤 5)。 使用正向引物 5 ‘-tatacccccaccccatgt-3 ‘ 和反向引物 5 ‘-agcgggaagacaca-3 ‘ 来确认转基因玉米果仁中存在 lablab ailp基因。 5. rna 分离、cdna 合成和半定量 rt-pcr 取先前储存在80°C 的同质化的黄酮感染玉米籽粒进行 rna 提取。根据制造商的协议, 使用总 rna 分离试剂盒提取 rna, 但稍作修改18。在提取缓冲液中加入50毫克的均质玉米籽粒粉末后, 使用1毫升管尖将其混合 (无涡流), 并将其放在冰上 5-6, 然后按照制造商的协议进行后续步骤。 根据制造商的协议18, 使用 cdna 合成试剂盒制备 cdna。 如前面所述,在半定量 rt-pcr 中, 每个 pcr 反应使用0.5μl 未稀释的 cdna。分别使用正向和反向引物 qailp-f 5 ‘-tccacacacacatgg-3 ‘ 和 qAILP-F 5 ‘-cggggggggagagacatata-3 ‘ 来检测lablab ailp基因的表达, 正向和反向引物 qrif-f 5-ggtgtgtgttaaggagg-3-qrif-r5-tcacccacacacacacacacacacacacatgg-3 分别表达玉米核糖体结构基因 (肋骨), grmzm2g02483819作为一种维持的基因。 6. gfp 定量 在去电离 h2o 中, 分别制备 0.2 m 二甲酸钠 (nah2po4) 和 0.2 m 二基磷酸钠 (na2hpo4·7h2o), 各50毫升. 构成100毫升的 ph 值7.0 索伦森的磷酸盐缓冲液。对于 ph 7.0, 添加 19.5 ml nah2po4个库存、30.5 ml nahpo 4·7h2o库存和 50 ml 去电离 h2 o. 称量25毫克的磨粒材料 (新鲜重量, fw), 并放置在 1.0 ml 微离心管中。在离心管和涡流中加入500μl 磷酸盐缓冲液30个月。 以 16, 000 x g 离心样品 15分钟. 将100μl 上清液放入黑色96井板中。用荧光计 (励磁 485 nm, 排放 528 nm) 阅读样品。 7. 黄曲霉毒素分析总量 样品加工和黄曲霉毒素提取 在60°c 的强制空气烤箱中干燥核样品2天。称重样品, 并将其放置在一个50毫升的 erlenmeyer 烧瓶中, 并配有玻璃塞子。 在烟罩中, 在每个烧瓶中加入25毫升的二氯甲烷。注意: 二氯甲烷具有极高的挥发性, 被认为是危险的 (刺激性物质、致癌物质)。乳胶和亚硝酸盐手套在使用二氯甲烷时都是不安全的。使用改进的有机溶剂耐多乙烯醇手套。 在手腕动作振荡器上摇匀样品30分钟。30分钟后, 通过凹槽滤纸圆圈将提取物慢慢倒入80毫升烧杯中。让烧杯在通风柜里连夜干燥。 第二天, 喷亚甲基氯甲烷 (约5毫升) 周围的干烧杯的内缘, 旋转周围, 并倒进2德拉姆玻璃瓶。让小瓶在烟罩里过夜晾干。 黄曲霉毒素分析 加入4.0 毫升80% 甲醇: 去电离的 h2o(v/v) 到小瓶。 使用黄曲霉毒素萃取试剂盒, 用所提供的色谱柱过滤甲醇溶液的净化。根据制造商的说明, 使用荧光计分析黄曲霉毒素的总水平。

Representative Results

转基因植物的玉米转化与分子筛选 利用农杆菌eha101 菌株, 在 camv 35s 的控制下, 利用含有表达 lablab purpureus aip 基因的最终植物目的载体的农杆菌 eha101 菌株转化玉米 hi-ii 系的未成熟胚胎促进。五条独立转化的玉米系被推进到 t6 一代, 以便随后进行研究。转基因玉米植株较小, 活力较低, 但?…

Discussion

由于病原体和害虫造成的农作物产量损失是一个全球性问题20。目前, 合成杀菌剂和农药的应用是控制植物病原体和害虫的主要手段, 但这些生化物质在食品和饲料中的残留毒性会对人类和动物健康构成严重威胁21。考虑到玉米作为食品和饲料作物的经济重要性, 减少或消除黄曲霉毒素污染至关重要.<sup class="xref…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢阿肯色州大学的大卫·梅林特在早期开发和分析转基因玉米方面提供的协助。这项工作得到了 usda-ars cris 项目6054-4000-025-00d 的财政支助。在本文中提及商品名称或商业产品仅用于提供特定信息, 并不意味着美国农业部的推荐或认可。usda-ars 的平等就业机会政策规定人人机会平等, 并禁止在该机构人事政策、做法和业务的所有方面的歧视。

Materials

Agar Caisson
Amazing Marine Goop Eclectic Products
C1000 Touch CFX96 Real-Time System Bio-Rad
Corning Falcon Tissue Culture Dishes, 60 mm Fisher Scientific 08-772F
Eppendorf 5424 Microcentrifuge Fisher Scientific
Erlenmeyer flask with stopper, 50 mL Ace Glass 6999-10
Ethanol
FluoroQuant Afla Romer Labs COKFA1010
Fluted Qualitative Filter Paper Circles, 15 cm Fisher Scientific 09-790-14E
Force Air Oven VWR
FQ-Reader Romer Labs EQFFM3010
Geno/Grinder 2010 OPS Diagnostics SP 2010-115
Innova 44 Incubator Shaker Brunswick Scientific
iScript cDNA Synthesis Kit Bio-Rad 1708890
liquid Nitrogen
Low Form Griffin Beakers, 100 mL DKW Life Sciences 14000-100
Methanol
Methylene Chloride
Nexttec 1-step DNA Isolation Kit for Plants Nexttec 47N
Nikon Eclipse E600 microscope with Nikon DS-Qi1 camera Nikon
Nikon SMZ25 stereomicroscope with C-HGFI Episcopic Illuminator and Andor Zyla 4.2 sCMOS camera Nikon
Nunc Square BioAssay Dishes ThermoFisher Scientific 240835
Phire Plant Direct PCR Kit ThermoFisher Scientific F130WH
Polycarbonate Vials, 15 ml OPS Diagnostics PCRV 15-100-23
Potato Dextrose Broth
Snap Cap, 22 mm DKW Life Sciences 242612
Sodium Phosphate dibasic heptahydrate Sigma-Aldrich
Sodium Phosphate monobasic Sigma-Aldrich
Spectrum Plant Total RNA Kit Sigma-Aldrich STRN50
Stainless Steel Grinding Balls, 3/8'' OPS Diagnostics GBSS 375-1000-02
Stir Plate
Synergy 4 Fluorometer Biotek
T100 Thermal Cycler Bio-Rad
Triton X-100 Sigma-Aldrich T-9284
V8 juice Campbell's
Whatman Qualitative Grade Plain Sheets, Grade 3 Fisher Scientific 09-820P
Wrist-Action Shaker Burrell Scientific

References

  1. Ismaiel, A., Papenbrock, J. Mycotoxins: Producing fungi and mechanisms of phytotoxicity. Agriculture. 5 (3), 492-537 (2015).
  2. Mitchell, N., Bowers, E., Hurburgh, C., Wu, F. Potential economic losses to the USA corn industry from aflatoxin contamination. Food Additives & Contaminants: Part A. 33 (3), 540-550 (2016).
  3. Umesha, S., Manukumar, H. M., Chandrasekhar, B., Shivakumara, P., Shiva Kumar, J., Raghava, S., Avinash, P., Shirin, M., Bharathi, T. R., Rajini, S. B., Nandhini, M., Vinaya Rani, G., Shobha, M., Prakash, H. S. Aflatoxins and food pathogens: Impact of biologically active aflatoxins and their control strategies. Journal of the Science of Food and Agriculture. , (2016).
  4. Brown, R. L., Menkir, A., Chen, Z. Y., Bhatnagar, D., Yu, J., Yao, H., Cleveland, T. E. Breeding aflatoxin-resistant maize lines using recent advances in technologies – a review. Food Additives & Contaminants – Part A Chemistry, Analysis, Control, Exposure & Risk Assessment. 30 (8), 1382-1391 (2013).
  5. Abbas, H., Accinelli, C., Shier, W. T. Biological control of aflatoxin contamination in U.S. crops and the use of bioplastic formulations of Aspergillus flavus biocontrol strains to optimize application strategies. Journal of Agricultural and Food Chemistry. 65, 7081-7087 (2017).
  6. Udomkun, P., Wiredu, A. N., Nagle, M., Müller, J., Vanlauwe, B., Bandyopadhyay, R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application – A review. Food Control. 76, 127-138 (2017).
  7. Dohroo, N. P., Bhardwaj, S. S., Shyram, K. R. Amylase and invertase activity as influenced by Pythium pleroticum causing rhizome rot of ginger. Plant Disease Research. 2, 106-107 (1987).
  8. Singh, R., Saxena, V. S., Singh, R. Pectinolytic, cellulolytic, amylase and protease production by three isolates of Fusarium solani variable in their virulence. Indian Journal of Mycology and Plant Pathology. 19, 22-29 (1989).
  9. Fakhoury, A. M., Woloshuk, C. P. Amy1, the α-amylase gene of Aspergillus flavus: Involvement in aflatoxin biosynthesis in maize kernels. Phytopathology. 89 (10), 908-914 (1999).
  10. Bluhm, B. H., Woloshuk, C. P. Amylopectin induces Fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Molecular Plant-Microbe Interactions. 18 (12), 1333-1339 (2005).
  11. Gilbert, M. K., Majumdar, R., Rajasekaran, K., Chen, Z. Y., Wei, Q., Sickler, C. M., Lebar, M. D., Cary, J. W., Frame, B. R., Wang, K. RNA interference-based silencing of the a-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta. 247 (6), 1465-1473 (2018).
  12. Chen, Z. Y., Brown, R. L., Russin, J. S., Lax, A. R., Cleveland, T. E. A corn trypsin inhibitor with antifungal activity inhibits Aspergillus flavus α-amylase. Phytopathology. 89 (18944733), 902-907 (1999).
  13. Fakhoury, A. M., Woloshuk, C. P. Inhibition of growth of Aspergillus flavus and fungal α-amylases by a lectin-like protein from Lablab purpureus. Molecular Plant-Microbe Interactions. 14 (8), 955-961 (2001).
  14. Mirkov, T. E., Wahlstrom, J. M., Hagiwara, K., Finardi-Filho, F., Kjemtrup, S., Chrispeels, M. J. Evolutionary relationships among proteins in the phytohemagglutinin-arcelin-a-amylase inhibitor family of the common bean and its relatives. Plant Molecular Biology. 26 (4), 1103-1113 (1994).
  15. Kim, Y. H., Woloshuk, C. P., Cho, E. H., Bae, J. M., Song, Y. S., Huh, G. H. Cloning and functional expression of the gene encoding an inhibitor against Aspergillus flavus a-amylase, a novel seed lectin from Lablab purpureus (Dolichos lablab). Plant Cell Reports. 26 (4), 395-405 (2007).
  16. Frame, B., Main, M., Schick, R., Wang, K., Thorpe, T. A., Yeung, E. C. Ch. 22. Plant Embryo Culture. 710, 327-341 (2011).
  17. Rajasekaran, K., Sickler, C. M., Brown, R. L., Cary, J. W., Bhatnagar, D. Evaluation of resistance to aflatoxin contamination in kernels of maize genotypes using a GFP-expressing Aspergillus flavus strain. World Mycotoxin Journal. 6 (2), 151-158 (2013).
  18. Rajasekaran, K., Sayler, R. J., Sickler, C. M., Majumdar, R., Jaynes, J. M., Cary, J. W. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Plant Science. , 150-156 (2018).
  19. Shu, X., Livingston, D. P., Franks, R. G., Boston, R. S., Woloshuk, C. P., Payne, G. A. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides. Molecular Plant Pathology. 16 (4), 662-674 (2015).
  20. Savary, S., Ficke, A., Aubertot, J. -. N., Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Security. 4, 519-537 (2012).
  21. Damalas, C. A., Eleftherohorinos, I. G. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health. 8 (5), 1402-1419 (2011).
  22. Kowalska, A., Walkiewicz, K., Kozieł, P., Muc-Wierzgoń, M. Aflatoxins: Characterisitcs and impact on human health. Postępy Higieny i Medycyny Doświadczalnej (Online). 71, 315-327 (2017).
  23. Rajasekaran, K., Cary, J. W., Cotty, P. J., Cleveland, T. E. Development of a GFP-expressing Aspergillus flavus strain to study fungal invasion, colonization, and resistance in cottonseed. Mycopathologia. 165 (2), 89-97 (2008).
  24. Punt, P., Dingemanse, M. A., Kuyvenhoven, A., Soede, R. D., Pouwels, P. H., van den Hondel, C. A. Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene. 93 (1), 101-109 (1990).
  25. Lee, L. W., Chiou, C. H., Klomparens, K. L., Cary, J. W., Linz, J. E. Subcellular localization of aflatoxin biosynthetic enzymes Nor-1, Ver-1, and OmtA in time-dependent fractionated colonies of Aspergillus parasiticus. Archives of Microbiology. 181 (3), 204-214 (2004).
  26. Bhatnagar, D., Cary, J. W., Ehrlich, K., Yu, J., Cleveland, T. E. Understanding the genetics of regulation of aflatoxin production and Aspergillus flavus development. Mycopathologia. 162, 155-166 (2006).
  27. Williams, W. P., Krakowsky, M. D., Scully, B. T., Brown, R. L., Menkir, A., Warburton, M. L., Windham, G. L. Identifying and developing maize germplasm with resistance to accumulation of aflatoxins. World Mycotoxin Journal. 8 (2), 193-209 (2015).
  28. Broekaert, W. F., van Parijs, J., Leyns, F., Joos, H., Peumans, W. J. A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science. 245 (4922), 1100-1102 (1989).
  29. Vanparijs, J., Broekaert, W. F., Goldstein, I. J., Peumans, W. J. Hevein-an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta. 183, 258-264 (1991).
  30. Gozia, O., Ciopraga, J., Bentia, T., Lungu, M., Zamfirescu, I., Tudor, R., Roseanu, A., Nitu, F. Antifungal properties of lectin and new chitinases from potato tubers. Comptes Rendus de l’Academie des Sciences – Series III. 316 (8), 788-792 (1993).
  31. Wisessing, A., Choowongkomon, K. Amylase inhibitors in plants: Structures, Functions and Applications. Functional Plant Science and Biotechnology. 6 (1), 31-41 (2012).
  32. Tyagi, B., Trivedi, N., Dubey, A. a-amylase inhibitor: A compelling plant defense mechanism against insect/pests. Environment & Ecology. 32 (3), 995-999 (2014).
  33. Powers, J. R., Culbertson, J. D. In vitro effect of bean amylase inhibitor on insect amylases. Journal of Food Protection. 45, 655-657 (1982).
  34. Gatehouse, A. M. R., Fenton, K. A., Jepson, I., Pavey, D. J. The effects of a-amylase inhibitors on insect storage pests: Inhibition of a-amylase in vitro and effects on development in vivo. Journal of the Science of Food and Agriculture. 37, 727-734 (1986).
  35. Blanco-Labra, A., Chagolla-Lopez, A., Martinez-Gallardo, N., Valdes-Rodriguez, S. Further characterization of the 12-kDa protease a-amylase inhibitor present in maize seeds. Journal of Food Biochemistry. 19, 27-41 (1995).
  36. Abdollahi, A., Buchanan, R. L. Regulation of aflatoxin biosynthesis: Induction of aflatoxin production by various carbohydrates. Journal of Food Science. 46, 633-635 (1981).
  37. Liu, J., Sun, L., Zhang, N., Zhang, J., Guo, J., Li, C., Rajput, S. A., Qi, D. Effects of nutrients in substrates of different grains on aflatoxin B1 production by Aspergillus flavus. BioMed Research International. 2016, (2016).
  38. Uppala, S. S., Bowen, K. L., Woods, F. M. Pre-harvest aflatoxin contamination and soluble sugars of peanut. Peanut Science. 40 (1), 40-51 (2013).

Play Video

Cite This Article
Rajasekaran, K., Sayler, R. J., Majumdar, R., Sickler, C. M., Cary, J. W. Inhibition of Aspergillus flavus Growth and Aflatoxin Production in Transgenic Maize Expressing the α-amylase Inhibitor from Lablab purpureus L.. J. Vis. Exp. (144), e59169, doi:10.3791/59169 (2019).

View Video