资料来源:北卡罗来纳州立大学机械和航空航天工程公司,北卡罗来纳州罗利大学
螺旋桨是一种扭曲的翼,弦的角度相对于位置沿径向站的变化,如图 1 所示。螺旋桨广泛用于飞机和水上推进系统,因此需要对螺旋桨进行详细的描述,以设计高性能车辆。
图 1.径向站的弦、厚度和音调。
螺旋桨的决定性特征之一是螺距/扭转。螺旋桨的螺距通常以长度单位表示,是螺旋桨在一次旋转中通过空气的理论距离。然而,由于飞机和螺旋桨的阻力,螺旋桨从未在理论上飞行。实际行驶距离称为螺旋桨的有效螺距,理论或几何螺距与有效螺距之间的差异称为螺旋桨滑移,如图 2 所示。
图 2.俯仰和滑动的表示。
在本演示中,7个螺旋桨在亚音速风洞中使用螺旋桨试验台。接下来是详细的参数化研究,以分析螺距、直径和叶片数量的变化对螺旋桨性能的影响。
有两种主要的螺旋桨类型:固定螺距和可变螺距。固定螺距螺旋桨设计用于一种最佳工作状态,效率高;它们具有给定空速和转速的高功率输出与功率输入比,在大多数情况下,这是飞机巡航条件。然而,在起飞和降落期间,当转速和风速较低时,固定螺距螺旋桨效率极低。可变螺距螺旋桨叶片通过允许飞行员改变螺旋桨螺距,以最大限度地提高螺旋桨效率,从而解决固定螺距问题。正因如此,在燃油效率占优势的大型螺旋桨飞机中,可变螺距螺旋桨用于最大限度地提高效率。
先进比、推力系数、扭矩系数、功率系数和螺旋桨效率是螺旋桨表征所需的重要非维参数。基于这些参数,可以识别螺旋桨、空气制动器和风车系统,它们是螺旋桨的不同运行系统。在螺旋桨系统中,螺旋桨产生正推力和扭矩。当推力变为负时,当扭矩保持正时,空气制动系统启动。在这个制度下,螺旋桨使系统变慢。最后,当推力和扭矩都降至零以下时,螺旋桨处于风车系统。在这里,气流控制螺旋桨,因为它产生力的螺旋桨,驱动螺旋桨的电机/发动机无法克服。螺旋桨效率在螺旋桨区域之外是毫无意义的。
在高效率螺旋桨系统中操作螺旋桨始终需要为给定的空速和转速运行。如前所述,固定螺距螺旋桨通常设计为在巡航飞行期间以最高效率运行,虽然它们可以以较低的速度运行,例如在起飞和着陆期间,但效率非常低。可变螺距螺旋桨可根据飞行制度(起飞、巡航或着陆)调整,以在螺旋桨系统中获得尽可能高的效率,从而最大限度地提高飞机的燃油效率。
除了螺旋桨间距外,螺旋桨叶片的数量在设置螺旋桨的推力方面起着重要作用。通常,如果螺旋桨的直径或螺距存在设计限制,增加叶片数量可能会增加产生的推力量。然而,额外的推力可能以螺旋桨效率为代价,因此需要进行详细的分析。
先进比J,它是螺旋桨旋转速率(n)和直径(D)上使自由流速度(V+)正常化的参数,由以下方程给出:
自由流速度可以使用以下公式进行测量:
其中*是自由流密度。
推力系数CT是螺旋桨推力T的非维测量值,由方程给出:
同样,扭矩、CQ和功率、C P系数、螺旋桨扭矩的非维度量和输出功率分别由方程给出:
其中= 扭矩,P是提供给无刷直流电机以运行螺旋桨的动力。功率,P,可以计算为电压、V和电流的积,I:
最后,螺旋桨效率可以表示为:
1. 测量亚音速风洞的螺旋桨特性
图 3.推进器钻机。请点击此处查看此图的较大版本。
表 1.推进器经过测试。
螺旋桨直径 x 螺距(in) | 刀片数 | 材料 |
18 x 8 | 2 | Apc |
16 x 8 | 2 | Apc |
15 x 8 | 2 | Apc |
15 x 10 | 2 | Apc |
15 x 12 | 2 | Apc |
18 x 8 | 2 | 木材 |
18 x 8 | 4 | 木材 |
请注意,本研究中使用的固定螺距螺旋桨由其直径和螺距以英寸为单位定义。例如,18 x 8 螺旋桨是直径为 18 的螺旋桨,几何间距为 8 in。
推进器广泛用于许多不同类型的飞机,用于推进和产生推力,因此必须经过精心设计和定性。螺旋桨本质上是一个扭曲的翼,其中线的角度径向变化。螺旋桨的决定性特征之一是音高,或其扭曲。
螺旋桨的螺距通常以长度单位表示,是螺旋桨在一次旋转中通过空气的理论距离。然而,由于飞机和螺旋桨的阻力,螺旋桨从未在理论上飞行。实际行驶距离称为螺旋桨的有效螺距。理论螺距与有效螺距的区别称为螺旋桨的滑动。
在描述螺旋桨时,我们还讨论推力、扭矩和功率,它们的特点是各自的无尺寸系数。在这里,T是推力,tau是扭矩,P是电机的电源,罗是自由流密度,n是螺旋桨的旋转速率,D是螺旋桨的直径。重要的是,我们还定义了螺旋桨的效率。这是使用扭矩和推力系数以及高级比 J 进行计算的,后者将自由流速度与螺旋桨的旋转和直径规范化。使用这些无尺寸值,我们可以确定螺旋桨在不同条件下的运行方式。
在螺旋桨系统中,螺旋桨产生正推力和扭矩。当推力变为负时,空气制动系统启动,而扭矩仍为正。在这个制度下,螺旋桨减慢系统的速度,而不是提供积极的前进运动。当推力和扭矩都降至零以下时,螺旋桨处于风车系统。在这里,气流控制螺旋桨,因为它产生力的螺旋桨,驱动螺旋桨的电机无法克服。
需要注意的是,除了螺旋桨系统之外,螺旋桨效率的计算是毫无意义的。在高效率螺旋桨系统中,对于给定的空气速度和转速,始终需要操作螺旋桨。对于固定螺距螺旋桨,这可能很难,因为固定螺距螺旋桨设计为一种最佳操作条件,通常在巡航条件下效率最高,在起飞和着陆时效率低。
改进操作的一种方法是增加叶片数量,尤其是在螺旋桨的直径或螺距没有限制的情况下。这会增加推力。然而,它的代价是螺旋桨效率降低。在本实验中,我们将描述几个不同的螺旋桨,并确定螺距、直径和叶片数量对性能的影响。
在本实验中,我们将使用五个 APC 系列和两个直径、螺距和叶片数量不同的木材螺旋桨来检查亚音速风洞中的螺旋桨特性。
首先,使用四轴刺装在风洞内设置螺旋桨测试台,以容纳螺旋桨测试装置部件。六轴称重传感器用于测量推力和扭矩。将称重传感器连接到钻机上,固定无刷直流电机,该电机为螺旋桨提供动力,然后连接第一个螺旋桨。
现在,将无刷直流电机连接到电子速度控制器和脉冲宽度调制信号发生器,控制电机的速度。此外,将电机连接到功率分析仪以测量提供的电压和电流。然后将其和无刷直流电机连接到锂聚合物电池。
一旦设置完全组装,使用精神水平,以确保刺螺旋桨设置对齐气流的方向,没有任何俯仰或偏航。然后固定风洞门,打开主电源,然后打开风洞。然后,打开信号发生器和称重传感器数据采集系统。
在开始测试之前,在电子表格中记录螺旋桨特性,包括螺旋桨叶片的数量、直径和间距。现在,使用风洞计算机上的数据采集软件将称重传感器上的力归零。然后,设置信号发生器以 10% 油门运行电机。
首先,在风洞关闭时记录零读数。记录油门百分比和风洞传感器的动态压力的速度。此外,记录从功率分析仪提供给电机的电压和电流,以及称重传感器测量的推力和扭矩。
现在,打开风洞,将动态压力增加到0.5 psf。让风洞有时间稳定下来,然后记录所有数据。继续以 0.5 psf 的增量增加动态压力设置,以增强推力和扭矩变为负的动态压力设置。
以每个增量记录所有数据。一旦推力和扭矩的测量值为负,将动态压力设定为零并关闭风洞。然后使用信号发生器将电机转速提高到 50% 节气门。进行零测量,在风洞关闭时记录所有数据。然后在风洞上打开,并将动态压力读数设置为 0.5 psf。然后记录所有数据。
以 0 的增量重复测量值。5 psf 至动态压力读数,扭矩和推力变为负数。然后将动态压力设定为零,关闭风洞,并将螺旋桨速度提高到 100% 油门。在风洞关闭后记录零测量值,然后再次重复测试,达到扭矩和推力变为负的动态压力。
对所有螺旋桨重复这些测试,确保测试每个螺旋桨的 10%、50% 和 100% 油门的速度,以及推力和扭矩变为负的动态压力。完成所有测试后,将电子速度控制器插入编程套件并记录所有螺旋桨转速数据。然后关闭所有系统。
为了评价实验结果,我们将首先使用螺旋桨推力、旋转速率、直径和自由流密度计算推力系数、CT。我们还可以分别计算扭矩和功率系数,CQ和CP。回想一下,tau 是螺旋桨扭矩,P 是提供给直流电机的电源,计算为电压和电流的积。
最后,可以计算出高级比J,使自由流速度与螺旋桨的旋转率和直径标准化。旋转速率是实验期间记录的每分钟旋转数除以 60。自由流速度是利用风洞中控制的动态压力计算的。然后,可以计算出螺旋桨效率。
现在,让我们绘制一个螺旋桨的三个系数和效率与高级比率 J。在这里,我们展示一个双叶片,18in直径,8in螺距螺旋桨的数据。螺旋桨产生正推力,达到0.6的先进比,然后过渡到空气制动区域。当推力变为负时,空气制动区域开始,而扭矩仍为正。在这个区域,螺旋桨使系统变慢。
在 0.85 的先进比后,螺旋桨产生负扭矩,并且像风车一样工作。在这里,气流产生力的螺旋桨,驱动螺旋桨的电机无法克服。请注意,螺旋桨效率最高,J 等于 0.4,在螺旋桨区域之外没有意义。
现在,让我们来看看不同的螺旋桨直径,同时保持叶片和螺旋桨间距的数量恒定。我们可以看到,直径的变化对效率的影响可以忽略不计。然而,随着螺旋桨直径的减小,三个系数略有增加。
接下来,我们将比较各种螺旋桨间距的影响,同时保持恒定的螺旋桨直径和叶片数量。我们看到,一般来说,与低螺距螺旋桨相比,高螺距螺旋桨在给定的先进比下产生更多的推力、扭矩和功率。增加螺旋桨间距也增加了螺旋桨区域的范围。我们看到,随着螺旋桨螺距的增加,最高运行效率以更高的先进比率出现。
最后,我们将比较叶片数的影响,同时保持恒定的螺旋桨直径和螺距。我们可以看到,刀片数量翻倍会导致推力和扭矩明显增加。虽然螺旋桨区域的范围相似,但与双叶片螺旋桨相比,四叶片螺旋桨开始以更高的先进比例开始像风车一样工作。还可以看到,双叶片螺旋桨的效率略高于其四叶片螺旋桨。
总之,我们了解了螺旋桨的不同运行制度,以及螺距如何影响螺旋桨的效率。然后,我们在亚音速风洞中对7个螺旋桨进行了特征分析,以分析螺距、直径和叶片数量对螺旋桨性能的影响。
自由流密度,α:0.074 磅/英尺3,用于确定结果。图 4 显示了螺旋桨中 18 x 8 的双叶片的推力系数、扭矩、功率和螺旋桨效率的变化。螺旋桨、空气制动器和风车区域被划分。双叶片,18 x 8 型螺旋桨产生正推力,最高为 0.6,之后它过渡到空气制动区域,直到J 0.85。在这一点和之后,螺旋桨开始产生负扭矩,并像风车一样工作。螺旋桨在J = 0.4 时达到最高效率。
图 4.双叶片的特性,18 x 8 在螺旋桨。
图5-7比较了螺旋桨的CT、C Q、C P和α行为,其直径、螺距和叶片数量分别有变化。如图5所示,螺旋桨直径的变化,同时保持叶片数量和螺旋桨间距的常数对螺旋桨效率的影响可以忽略不计。然而,给定先进比J的CT、C Q和CP随螺旋桨直径减小而略有增加。
图 5.不同直径螺旋桨特性的比较。请点击此处查看此图的较大版本。
不同的螺旋桨螺距显著影响所有参数,如图 6 所示。一般来说,与低螺距螺旋桨相比,高螺距螺旋桨在给定的先进比下产生更多的推力、扭矩和功率。增加螺旋桨间距也增加了螺旋桨区域的范围,即大区域的正推力和扭矩。最后,随着螺旋桨间距的增加,最高运行效率在更高的先进比下发生。
图 6.不同螺距的螺旋桨特性比较。请点击此处查看此图的较大版本。
图 7 显示,刀片数量翻倍会导致推力和扭矩明显增加。虽然螺旋桨区域类似,但四叶片螺旋桨开始像风车一样,比双叶片螺旋桨更高的先进比例。此外,双叶片螺旋桨的效率略高于其四叶片螺旋桨。
图 7.螺旋桨的特性比较,其叶片数量各不相同。请点击此处查看此图的较大版本。
推进器用于为小型飞机提供动力,并提供一种提供推力的简单方法。它们可以连接到电动或往复发动机上,在那里它们将转速转换为推力以进行推进。在本次演示中,使用安装在亚音速风洞中的螺旋桨试验装置,对7个间距、直径和叶片数量不同的螺旋桨进行了描述。对于每个螺旋桨,都确定了螺旋桨、空气制动器和风车运行区域。为研究螺旋桨直径的影响而进行的参数化研究表明,推力和扭矩随直径减小而略有下降。然而,螺旋桨间距对推力和扭矩特性有显著影响,高螺距螺旋桨具有明显优势。此外,螺旋桨区域的范围随着螺距的减小而减小。最后,增加叶片数量会增加推力、扭矩和功率,螺旋桨效率略有下降。
需要为飞机或水上飞机选择适当的推进系统(发动机/电机-螺旋桨组合),以实现高性能和高效的空中或水上车辆。详细的螺旋桨特性数据为工程师提供了评估飞机/水上所有运行速度的飞行性能参数的准确方法,从而正确确定最佳推进系统。
Propellers are widely used in many different types of aircraft for propulsion and the generation of thrust, and must therefore be carefully designed and characterized. A propeller is essentially a twisted airfoil, where the angle of the cord changes radially. One of the defining characteristics of the propeller is the pitch, or its twist.
The pitch of the propeller is generally given in units of length and is the theoretical distance the propeller will travel through the air in one single revolution. However, due to the drag force on the aircraft and propeller, the propeller never travels its theoretical distance. The actual distance traveled is called the effective pitch of the propeller. The difference between the theoretical pitch and the effective pitch is called the propeller’s slip.
When describing propellers, we also talk about thrust, torque, and power, which are characterized by their respective dimensionless coefficients. Here, T is thrust, tau is torque, P is power supply to the motor, rho is the freestream density, n is the propeller’s rate of rotation, and D is the propeller diameter. Importantly, we also define a propeller’s efficiency. This is calculated using the torque and thrust coefficients along with the advanced ratio J, which normalizes the freestream velocity to the propeller rotation and diameter. Using these dimensionless values, we can determine how a propeller is operating in different conditions.
In the propeller regime, the propeller is producing positive thrust and torque. The air-brake regime starts when thrust goes negative, while torque remains positive. In this regime, the propeller slows the system down rather than providing positive forward motion. When thrust and torque both drop below zero, the propeller is in the windmill regime. Here, the airflow controls the propeller, as it produces forces on the propeller that the motor driving the propeller cannot overcome.
It is important to note that beyond the propeller regime, the calculation of propeller efficiency is meaningless. It is always desirable to operate the propeller in the high efficiency propeller regime for a given air speed and RPM. For fixed-pitch propellers, this can be difficult as the fixed-pitch propellers are designed for one optimum operating condition and are usually most efficient in cruise conditions and inefficient in takeoff and landing.
One way to improve operation, especially if there are no constraints on the diameter or pitch of the propeller, is by increasing the number of blades. This can increase the amount of thrust. However, it comes at the cost of lower propeller efficiency. In this experiment, we will characterize several different propellers and determine the effect of pitch, diameter, and number of blades on performance.
In this experiment, we will examine propeller characteristics in a subsonic wind tunnel using a series of five APC and two wood propellers with varying diameter, pitch, and number of blades.
To begin, set up the propeller test rig inside of the wind tunnel using a four-axis sting mount to hold the propeller test rig components. A six-axis load cell is used to measure thrust and torque. Attach the load cell to the rig, secure the brushless DC motor, which powers the propeller, and then attach the first propeller.
Now, connect the brushless DC motor to the electronic speed controller and the pulse-width modulated signal generator, which controls the speed of the motor. Also, connect the motor to a power analyzer to measure the supplied voltage and current. Then connect it and the brushless DC motor to a lithium polymer battery.
Once the setup is completely assembled, use a spirit level to ensure that the sting propeller setup is aligned in the direction of airflow without any pitch or yaw. Then secure the wind tunnel doors, switch on the main power, and turn on the wind tunnel. Then, switch on the signal generator and the load cell data acquisition system.
Before starting the tests, record the propeller characteristics in your spreadsheet, including the number of propeller blades, the diameter, and pitch. Now, zero the forces on the load cell using the data acquisition software on the wind tunnel computer. Then, set the signal generator to run the motor at 10% throttle.
Start by recording a zero reading with the wind tunnel off. Record the speed in terms of percentage of throttle and the dynamic pressure from the wind tunnel transducer. Also, record the voltage and current supplied to the motor from the power analyzer, and the thrust and torque measured by the load cell.
Now, turn on the wind tunnel and increase the dynamic pressure to 0.5 psf. Allow time for the wind tunnel to stabilize, then record all data. Continue to increase the dynamic pressure setting in increments of 0.5 psf up to a dynamic pressure setting at which thrust and torque become negative.
Record all data at each increment. Once the measurements for thrust and torque are negative, set the dynamic pressure back to zero and switch off the wind tunnel. Then increase the motor speed to 50% throttle using the signal generator. Take the zero measurement, recording all data with the wind tunnel off. Then switch on the wind tunnel and set the dynamic pressure reading to 0.5 psf. Then record all data.
Repeat the measurements as before in increments of 0. 5 psf up to a dynamic pressure reading where torque and thrust become negative. Then set the dynamic pressure back to zero, switch off the wind tunnel, and increase the propeller speed to 100% throttle. Record the zero measurement with the wind tunnel off, then repeat the tests again up to a dynamic pressure where torque and thrust become negative.
Repeat these tests for all of the propellers, making sure to test speeds of 10%, 50%, and 100% throttle for each propeller up to a dynamic pressure where thrust and torque become negative. Upon completion of all tests, plug the electronic speed controller into the programming kit and record all of the propeller RPM data. Then shut down all of the systems.
To evaluate the results of the experiment, we will first calculate the thrust coefficient, CT, using the propeller thrust, rate of rotation, diameter, and freestream density. We can also calculate the torque and power coefficients, CQ and CP, respectively. Recall that tau is propeller torque and P is the power supplied to the DC motor and is calculated as the product of voltage and current.
Finally, we can calculate the advanced ratio J, in order to normalize the freestream velocity to the propeller rate of rotation and diameter. The rate of rotation is the rotations per minute that was logged during the experiment, divided by 60. The freestream velocity is calculated using the dynamic pressure, which we controlled in the wind tunnel. Then, propeller efficiency can be calculated.
Now, let’s plot the three coefficients and the efficiency versus the advanced ratio, J, for one of the propellers. Here, we show data for a two-blade, 18-in diameter, 8-in pitch propeller. The propeller produces positive thrust up to an advanced ratio of 0.6, where it then transitions to the air-brake region. The air-brake region starts when thrust goes negative, while torque remains positive. In this region, the propeller slows the system down.
After an advanced ratio of 0.85, the propeller produces negative torque and behaves like a windmill. Here, the airflow produces forces on the propeller that the motor driving the propeller cannot overcome. Note that the propeller efficiency is highest at J equals 0.4 and is meaningless beyond the propeller region.
Now, let’s take a look at varying propeller diameter, while keeping the number of blades and propeller pitch constant. We can see that the change in diameter has a negligible effect on efficiency. However, the three coefficients increase slightly with decreasing propeller diameter.
Next, we’ll compare the effect of varied propeller pitch, while maintaining constant propeller diameter and number of blades. We see that, in general, a high pitch propeller produces more thrust, torque, and power for a given advanced ratio as compared to a low-pitch propeller. Increasing propeller pitch also increases the range of the propeller region. We see that the maximum operating efficiency occurs at a higher advanced ratio as propeller pitch increases.
Finally, we’ll compare the effect of blade number, while maintaining constant propeller diameter and pitch. We can see that doubling the number of blades leads to a significantly higher amount of thrust and torque. While the extent of the propeller region is similar, the four-blade propeller starts behaving like a windmill at a higher advanced ratio as compared to the two-blade propeller. It can also be observed that the two-blade propeller is slightly more efficient than its four-blade counterpart.
In summary, we learned about the different operating regimes of propellers and how pitch affects propeller efficiency. We then characterized 7 propellers in a subsonic wind tunnel to analyze the effects of pitch, diameter, and number of blades on propeller performance.
Related Videos
Aeronautical Engineering
8.2K 浏览
Aeronautical Engineering
26.1K 浏览
Aeronautical Engineering
21.0K 浏览
Aeronautical Engineering
13.3K 浏览
Aeronautical Engineering
8.6K 浏览
Aeronautical Engineering
16.1K 浏览
Aeronautical Engineering
37.8K 浏览
Aeronautical Engineering
11.3K 浏览
Aeronautical Engineering
8.0K 浏览
Aeronautical Engineering
4.9K 浏览
Aeronautical Engineering
48.6K 浏览
Aeronautical Engineering
7.2K 浏览
Aeronautical Engineering
8.5K 浏览
Aeronautical Engineering
10.1K 浏览
Aeronautical Engineering
9.1K 浏览