资料来源:弗朗西斯·萨亚斯塔德1,2,惠特尼·斯旺森2,3和托马斯·格里菲斯1,2,3,4
1明尼苏达大学明尼阿波利斯分校微生物学、免疫学和癌症生物学研究生课程,MN 55455
2明尼苏达大学明尼阿波利斯分校免疫学中心,MN 55455
3明尼苏达大学泌尿科,明尼阿波利斯,MN 55455
4共济会癌症中心,明尼苏达大学明尼阿波利斯分校,MN 55455
多边克隆抗体被定义为针对抗原或多种抗原的不同抗原决定子(1)的抗体的集合。虽然多克隆抗体是识别生物分子的有力工具,但有一个重要的局限性 – 它们无法区分具有抗原决定因素的抗原。例如,当牛血清白蛋白用于给动物接种疫苗时,具有不同表面Ig的B细胞对牛血清白蛋白上不同的抗原决定因素有反应。结果是抗血清中的抗体混合物。由于牛血清白蛋白与人类血清白蛋白在进化保存区域与人血清白蛋白共享一些表皮,这种抗牛血清白蛋白抗血清也会与人血清白蛋白发生反应。因此,这种抗血清对区分牛和人血清白蛋白没有用处。
为了克服多克隆抗血清的特异性问题,我们采取了几种方法。一种是通过通过固定抗原(2)的色谱柱吸收不需要的抗体。这种方法是乏味的,往往不能完全去除不需要的抗体。另一种方法是分离单个产生抗体的B细胞,并在培养中扩大它们。然而,像大多数正常未转化的细胞一样,B细胞在长期培养中无法存活。
为了克服B细胞在培养中生存的能力,一种方法是制备骨髓瘤-B细胞杂交瘤。1847年,亨利·本斯-琼斯发现多发性骨髓瘤(一种淋巴瘤)患者产生了大量抗体(3)。这些患者的B细胞已经变得恶性,并不受控制地生长。由于恶性B细胞来自单个克隆,它们相同,只产生一种类型的抗体(即单克隆抗体或mAb)。然而,这些骨髓瘤细胞大多产生未知特异性的抗体。1975年,塞萨尔·米尔斯坦和乔治·科勒通过将骨髓瘤细胞融合到B细胞中,成功地培育出一种可以在体外无限期培养的杂交瘤,并产生无限数量的已知抗原特异性的单克隆抗体(4)。其方法背后的原理是结合骨髓瘤细胞的不朽特性和产生B细胞的抗体特性。其技术彻底改变了抗体生产,为使用单克隆抗体识别和纯化生物分子提供了强有力的手段。
一般来说,制备单克隆抗体需要几个月。一般过程包括以下步骤:
该协议侧重于最后一步 – 杂交瘤的生长和单克隆抗体的制备。抗体通过硫酸铵沉淀(通常称为盐化)从培养上清液中纯化 – 一种常用的方法,从溶液中去除蛋白质。溶液中的蛋白质与其他亲水性相互作用一起通过暴露的极性组和离子组与水形成氢键。当加入小、高电荷离子(如铵或硫酸盐)的浓度时,这些组与蛋白质竞争与水结合。这从蛋白质中去除水分子,降低其溶解度,导致蛋白质沉淀。
注意:在以无菌方式处理混合瘤细胞和介质时(例如,在生物安全柜中),在抗体净化步骤之前,应保持无菌细胞培养技术。
1. 解冻冷冻杂交细胞
2. 杂交瘤扩张
3. 无血清介质中的抗体生产
注意:此时,细胞准备在专为杂交瘤细胞系生长而设计的无血清培养基中继续生长。在此协议中,我们使用含有 HB101 补充剂产品的即用型、商用 HB 基础液体介质。
4. 抗体纯化 – 第1天
注意:此时,不需要保持无菌,因此无需以无菌方式处理介质(例如,在生物安全柜中)。此外,杂交瘤不被视为”BSL2级”代理。
5. 抗体纯化 – 第2天
抗体是研究和诊断的有力工具,这意味着大量生产它们通常是必要的。
产生抗体的第一步是将感兴趣的抗原注射到宿主动物体内。抗原激活宿主的B细胞,然后产生和释放该抗原特有的抗体。然后,使用ELISA或其他检测方法,对宿主动物的抗血清进行定期筛查,以检测目标抗体的存在。一旦检测到它,宿主动物的脾脏,包含B细胞,被删除。如果脾脏中的所有B细胞现在都被分离,这应该包括一个正在分泌感兴趣的抗原抗体的种群。我们称这个群体为多克隆,因为每个细胞可能绑定到抗原的不同表位,因此,产生自己的个体和独特的抗体。
要产生单克隆抗体,必须首先分离和培养用于识别特定表位的抗体,必须首先分离和培养产生所需抗体的单个B细胞。不幸的是,B细胞在培养中不能很好地存活。因此,为了克服这一障碍,科学家将B细胞与不朽的骨髓瘤细胞融合在一起,导致杂交瘤。这些细胞随后在选择性培养基中生长,仅允许杂交瘤生长和释放抗体。同样,使用ELISA等方法对该介质进行筛选,以寻找所需的抗体。一旦检测到杂交瘤,通过称为限制稀释的过程克隆,即父培养物的连续稀释,这将导致单细胞被播种到筛选板的孔中。这允许从单个母细胞生长杂交瘤,产生仅释放所需抗体的单克隆细胞系。这些单克隆线可以在组织培养瓶中扩展,以产生大量的单克隆抗体。在此之后,当细胞开始死亡时,抗体可以从介质中沉淀成硫酸铵。通常,在溶液中,抗体通过亲水相互作用与水相互作用。然而,铵和硫酸盐是高电荷离子,将水分子与抗体分离,降低抗体的溶解度,导致其沉淀。
首先,首先检查材料列表,并准备协议的所有介质、耗材和工作面。
然后,打开水浴,将其设置为 37 摄氏度。接下来,将 10 毫升完整的 RPMI 添加到 15 毫升锥形管中,将 15 毫升的完整 RPMI 添加到 T75 细胞培养瓶中,并将其放在一边。使用谨慎和穿着适当的个人防护设备,从液氮储存中取出含有杂交细胞的冷冻小瓶。要释放小瓶内的压力,应稍微松开瓶盖。现在,在水浴中小心孵育小瓶,确保瓶盖保持在水面上方,以尽量减少污染的可能性。当细胞几乎解冻时(通常需要大约两分钟)时,将小瓶移到组织培养罩上。
然后,在取下瓶盖之前,用70%乙醇擦拭小瓶外侧。使用无菌移液器,将细胞转移到含有10毫升完整RPMI培养基的锥形管中。然后,在 1200 RPM 下将管离心 5 分钟。离心后,将管子移回组织罩并用乙醇擦拭管外侧。在不干扰颗粒的情况下,丢弃上清液,然后加入五毫升新鲜完整的 RPMI 介质,然后轻轻上下移液以重新悬浮。接下来,将细胞转移到T75细胞培养瓶中,将烧瓶置于37摄氏度的5%二氧化碳培养箱内。允许细胞达到约80%的汇合,这通常需要大约三天。请注意,杂交瘤细胞是非粘附的,并且会生长在培养基中。达到足够的汇合时间可能因活细胞的起始数量和所使用的杂交瘤细胞类型而异。
一旦细胞充分结合,使用无菌的25毫升移液器将其从培养瓶转移到圆锥形离心管中。在1200RPM下通过离心将细胞进行5分钟的离心。当细胞在离心机中时,在三个新的T75细胞培养瓶中加入18毫升的完整RPMI,并将其放在一边。离心后,去除上清液,并轻轻地将细胞颗粒悬浮在六毫升完整的RPMI中。接下来,在三个新的细胞培养瓶中加入两毫升的细胞悬浮液。最后,将烧瓶放入设定为5%二氧化碳和37摄氏度的孵化器中,孵育至烧瓶约80%的汇入,约3天。
此时,细胞已准备好在专为杂交瘤细胞系设计的无血清培养基中继续生长,例如含有HB101补充剂的商用HB基底液体培养基。将细胞从每个细胞培养瓶转移到圆锥形离心管中,然后以1200RPM离心对细胞进行5分钟的离心。现在,在6个225厘米平方的细胞培养瓶中加入230毫升补充的HB101无血清培养基,并把它们放在一边。当离心完成时,去除上清液,并在10毫升补充的HB101培养基中重新悬浮每粒。然后,进入每个细胞培养瓶,加入五毫升的细胞悬浮液。将烧瓶置于37摄氏度的5%二氧化碳培养箱中,然后继续生长约三周。在此期间,细胞将产生并释放感兴趣的单克隆抗体到培养基,当细胞开始死亡时,抗体将准备好进行纯化。
要从含抗体培养基介质中清除细胞碎片,将培养瓶中的内容物倒入管中,用于固定角度转子。将管子放在转子中,并确保在离心前正确平衡。以 10,000 RPM 旋转管 8 分钟。当样品离心时,将一个装有搅拌棒的两升塑料烧杯放入冰桶中,然后将冰桶放在搅拌板上。
接下来,将 500 毫升的过滤器顶部连接到一升瓶。使用适当的管道将此瓶顶过滤单元连接到室内真空中。然后,将含有抗体的上清液倒入过滤器顶部。离心剩余的介质,以分离细胞碎片从含抗体的上清液。当过滤器顶部充满上清液时,启动真空。然后,当一升收集瓶接近满时,取下过滤器顶部,将过滤过的上清液倒入冰上两升烧杯中。重复过滤步骤,直到处理所有上清液。
处理完所有样品后,每升过滤上清液重量为295克硫酸铵。启动搅拌板,并在接下来的几个小时内缓慢地将硫酸铵添加到上清液中。这可以防止硫酸铵盐的局部高浓度,可能导致不需要的蛋白质沉淀。加入所有硫酸铵后,用箔覆盖烧杯,连同搅拌板一起将其移至四摄氏度的冷藏室,并设置在一夜之间搅拌抗体溶液。
第二天早上,将含硫酸铵的抗体溶液从两升烧杯倒入固定角度转子的清洁管中。在 6500 RPM 下将管离心 20 分钟,不中断以颗粒管底部的抗体。接下来,真空吸出上清液,小心不要吸吮软颗粒。继续使用同一组管子从含硫酸铵的上清液中收集颗粒抗体。在最后一次吸入后,将每个抗体颗粒重新悬浮在大约一毫升的PBS中。
要从抗体溶液中去除硫酸铵,首先每毫升抗体溶液切割大约一英寸的透析管。接下来,用蒸馏水擦拭管子,在油管的一端打一个结。在油管中加注蒸馏水,以检查结有无泄漏。如果几分钟后没有泄漏,则将水从管中倒空。
接下来,将抗体溶液移入管中。为了恢复尽可能多的抗体,用额外的0.25毫升的PBS冲洗管子,并将它转移到管中。使用透析夹将管的顶部固定在尽可能靠近溶液的地方。然后,将油管顶部带入四升烧杯的外部,将油管的填充部分悬挂在烧杯中。现在,把烧杯带到四摄氏度的寒冷房间,放在搅拌盘上。用 PBS 填充烧杯顶部,并添加搅拌棒。让管子和溶液搅拌约8小时。第二天早上,用新鲜的 PBS 替换烧杯中的 PBS,然后离开烧杯再次搅拌约 8 小时。那天晚上晚些时候,最后重复一次这个过程。早上,打开透析管,然后将抗体溶液从管转移到15毫升锥形管。要去除透析过程中可能形成的任何沉淀物,请以 1200 RPM 将管离心 5 分钟。最后,将上清液转移到新鲜管中。
为了量化抗体浓度,首先通过在95微升的PBS中加入5微升的抗体等分,进行20倍的稀释。然后,将稀释的抗体移入比色皿中,并使用分光光度计将浓度记录在280纳米。接下来,使用所示公式计算抗体浓度。最后,用抗体名称、浓度、制备日期以及(如适用)批号和实验者名称,将抗体与标记的螺帽小瓶等标记。这些可以储存在零下80摄氏度,直到需要。
使用 120G8 抗小鼠 CD317 或 PDCA-1 杂交瘤系列的示例产量范围在 44 到 99.6 毫克之间,通常平均产量为 67.3 毫克。需要注意的是,每个生产运行使用相同的杂交瘤细胞系可以略有不同的单克隆抗体在末端可用。
使用该协议,我们获得了以下结果与几个不同的杂交瘤:
杂交瘤: RB6-BC5 (大鼠抗小鼠 Ly6C/Ly6G (Gr1) IgG2b, +mAb)
OD280 – 1.103
(1.103/1.43)(20) = 15.42毫克/升
杂交瘤: GK1.5 (大鼠抗小鼠 CD4 IgG2b, β mAb)
OD280 – 0.485
(0.485/1.43)(20) = 6.78毫克/升
杂交瘤: 2.43 (大鼠抗小鼠 CD8 IgG2b, β mAb)
OD280 – 0.209
(0.209/1.43)(20) = 2.92 毫克/升
这些都是示例结果,请务必注意,每个具有相同杂交瘤的生产运行在末尾可用的 mAb 数量上可能略有不同。
上述程序是一种简单、直截了当的方法,用于从杂交瘤培养上清液中纯化单克隆抗体。重要的是要记住,虽然,硫酸铵将沉淀其他蛋白质,可能是在培养上清。因此,从吸光度测量中确定的抗体浓度是估计值。用户可能希望通过在SDS-聚丙烯酰胺凝胶上运行少量,来评估透析样品的纯度。杂交瘤产生的mAb,一旦使用这种方法进行纯化,就可以以多种方式使用。上述RB6-BC5、GK1.5和2.43 mAb通常用于小鼠中微粒细胞、CD4 T细胞和CD8 T细胞的体内耗竭。使用该协议生产和纯化的其他 mAb 可用于流式细胞测定(当与荧光荧光结合或与二次 Ab 结合时)、ELISA 或西方印迹。
Antibodies are a powerful tool for research and diagnosis, which means producing them in large quantities is often necessary.
The first step to generating antibodies is to inject the antigen of interest into a host animal. The antigen activates the host’s B-cells which then produce and release antibodies specific to that antigen. Then, regular screening of the host animal’s antisera for the presence of the target antibody is carried out, using ELISA or another detection method. Once it’s detected, the host animal’s spleen, which contains the B-cells, is removed. If all of the B-cells from the spleen are now isolated, this should include a population which are secreting antibodies to the antigen of interest. We refer to this population as polyclonal, because each cell likely bound to a different epitope of the antigen, and therefore, generated its own individual and unique antibody.
To generate monoclonal antibodies, antibodies raised to recognize one specific epitope, the individual B-cell that produces the desired antibody must first be isolated and cultured. Unfortunately, B-cells do not survive well in culture. So to overcome this hurdle, scientists fuse B-cells with immortal myeloma cells, resulting in hybridomas. These cells are then grown in a selective medium that only allows the hybridomas to grow and release antibodies. Again, the medium is screened using a method such as ELISA for the desired antibody. Once it is detected, the hybridomas are cloned via a process called limiting dilution, a serial dilution of the parent culture, which should result in single cells being seeded into the wells of a screening plate. This allows growth of hybridomas from a single parent cell, yielding a monoclonal cell line that only releases the desired antibody. These monoclonal lines can be expanded in tissue culture flasks to produce large quantities of monoclonal antibody. After this, as the cells begin to die off, the antibodies can be precipitated from the medium with ammonium sulfate. Normally, in solution, antibodies interact with water through hydrophilic interactions. However, ammonium and sulfate are highly-charged ions that separate the water molecules from the antibodies, decreasing the solubility of the antibodies and causing them to precipitate.
To begin, first check the list of materials and prepare all the media, supplies, and work surfaces for the protocol.
Then, turn on a water bath and set it to 37 degrees Celsius. Next, add 10 milliliters of complete RPMI to a 15-milliliter conical tube and 15 milliliters of complete RPMI to a T75 cell culture flask and set them aside. Using caution and wearing the appropriate personal protective equipment, remove the frozen vial containing hybridoma cells from the liquid nitrogen storage. To release the pressure inside the vial, loosen the cap slightly. Now, carefully incubate the vial in the water bath, making sure that the cap remains above the water surface to minimize the chances of contamination. When the cells are almost thawed, which typically takes around two minutes, move the vial to the tissue culture hood.
Then, wipe the outside of the vial with 70% ethanol before removing the cap. Using a sterile pipette, transfer the cells into the conical tube that contains 10 milliliters of complete RPMI medium. Then, centrifuge the tube for five minutes at 1200 RPM. After centrifugation, move the tube back to the tissue hood and wipe the outside of the tube with ethanol. Without disturbing the pellet, discard the supernatant and then add five milliliters of fresh complete RPMI medium and gently pipette up and down to resuspend. Next, transfer the cells to the T75 cell culture flask and place the flask inside a 5% carbon dioxide incubator at 37 degrees Celsius. Allow the cells to reach approximately 80% confluency, which usually takes about three days. Notice that hybridoma cells are nonadherent and will grow suspended in the medium. The time to reach sufficient confluency may vary based on the starting number of live cells and the type of hybridoma cell used.
Once the cells are sufficiently confluent, use a sterile 25-milliliter pipette to transfer them from the culture flask into a conical centrifuge tube. Pellet the cells by centrifugation at 1200 RPM for five minutes. While the cells are in the centrifuge, add 18 milliliters of complete RPMI into each of three new T75 cell culture flasks and set these aside. After centrifugation, remove the supernatant and gently resuspend the cell pellet in six milliliters of complete RPMI. Next, add two milliliters of the cell suspension into each of the three new cell culture flasks. Finally, place the flasks into an incubator set to 5% carbon dioxide and 37 degrees Celsius and incubate until the flasks are around 80% confluent, approximately three days.
At this point, the cells are ready to continue their growth in the serum-free medium designed for hybridoma cell lines, such as commercially-available HB Basal Liquid medium containing the HB101 supplement. Transfer the cells from each cell culture flask into conical centrifuge tubes and then pellet the cells by centrifugation at 1200 RPM for five minutes. Now, add 230 milliliters of supplemented HB101 serum-free medium into each of six 225-centimeter-squared cell culture flasks and set them aside. When centrifugation is complete, remove the supernatant and resuspend each pellet in 10 milliliters of supplemented HB101 medium. Then, into each cell culture flask, add five milliliters of the cell suspension. Place the flasks in the 5% carbon dioxide incubator at 37 degrees Celsius and continue growing the cells for about three weeks. During this time, the cells will produce and release the monoclonal antibody of interest into the culture medium and the antibody will be ready for purification when the cells start to die.
To remove the cellular debris from the antibody-containing culture media, pour the contents of the culture flasks into tubes for a fixed angle rotor. Place the tubes in the rotor and make sure it is properly balanced prior to centrifugation. Spin the tubes at 10,000 RPM for eight minutes. While the samples are centrifuging, place a two-liter plastic beaker with a stir bar into an ice bucket and then put the ice bucket on a stir plate.
Next, attach a 500-milliliter filter top to a one-liter bottle. Attach this bottle top filter unit to a house vacuum using the appropriate tubing. Then, pour the supernatant that contains the antibody into the filter top. Centrifuge the remaining media to separate the cell debris from the antibody-containing supernatant. When the filter top is full of supernatant, start the vacuum. Then, when the one-liter collection bottle is close to full, remove the filter top and pour the filtered supernatant into the two-liter beaker on ice. Repeat the filtration steps until all of the supernatant is processed.
When all of the sample has been processed, weigh 295 grams of ammonium sulfate per one liter of filtered supernatant. Start the stir plate and slowly add the ammonium sulfate to the supernatant over the next couple of hours. This prevents a localized high concentration of ammonium sulfate salt that may cause unwanted proteins to precipitate. Once all of the ammonium sulfate has been added, cover the beaker with foil and move it, along with the stir plate, to a cold room at four degrees Celsius and set it to stir the antibody solution overnight.
The next morning, pour the ammonium sulfate-containing antibody solution from the two-liter beaker into clean tubes for the fixed angle rotor. Centrifuge the tubes at 6500 RPM for 20 minutes without break to pellet the antibody at the bottom of the tubes. Next, vacuum aspirate the supernatant, using caution not to suck up the soft pellet. Continue using the same set of tubes to collect the pelleted antibody from the remainder of the ammonium sulfate-containing supernatant. After the last aspiration, re suspend each antibody pellet in approximately one milliliter of PBS.
To remove the ammonium sulfate from the antibody solution, first cut approximately one inch of dialysis tubing for each milliliter of antibody solution. Next, wipe the tubing with distilled water and tie a knot on one end of the tubing. Fill the tubing with distilled water to check for leakage from the knot. If there is no leakage after a few minutes, empty the water out of the tubing.
Next, pipette the antibody solution into the tubing. To recover as much antibody as possible, rinse the tubes with an additional 0.25 milliliters of PBS and transfer this to the tubing also. Secure the top of the tubing as close to the solution as possible with a dialysis clip. Then, tape the top of the tubing to the outside top of a four-liter beaker with the filled portion of the tubing hanging into the beaker. Now, take the beaker to the four degree Celsius cold room and place it onto a stir plate. Fill the beaker to the top with PBS and add a stir bar. Allow the tube and solution to stir overnight for approximately eight hours. The next morning, replace the PBS in the beaker with fresh PBS and then leave the beaker to stir again for approximately eight hours. Later that evening, repeat the process one final time. In the morning, open up the dialysis tube and then transfer the antibody solution from the tubing to 15-milliliter conical tubes. To remove any precipitant that may have formed during dialysis, centrifuge the tubes for five minutes at 1200 RPM. Finally, transfer the supernatant to fresh tubes.
To quantify the antibody concentration, first make a 20-fold dilution by adding five microliters from an antibody aliquot to 95 microliters of PBS. Then, pipette the diluted antibody into a cuvette and use a spectrophotometer to record the concentration at 280 nanometers. Next, calculate the antibody concentration using the formula shown. Finally, label screw cap vials with the antibody name, concentration, date of preparation, and, if applicable, batch number and experimenter name, and then aliquot the antibody into the labeled screw cap vials. These can be stored at minus 80 degrees Celsius until needed.
Example yields using the 120G8 anti-mouse CD317 or PDCA-1 hybridoma line ranged between 44 and 99.6 milligrams, which typically yields, on average, 67.3 milligrams amount. It is important to note that each production run with the same hybridoma cell line can be slightly different in the amount of monoclonal antibody available at the end.
Related Videos
Immunology
92.5K 浏览
Immunology
22.7K 浏览
Immunology
236.5K 浏览
Immunology
28.3K 浏览
Immunology
78.3K 浏览
Immunology
43.3K 浏览
Immunology
53.5K 浏览
Immunology
42.9K 浏览
Immunology
87.3K 浏览
Immunology
24.0K 浏览
Immunology
22.1K 浏览
Immunology
151.3K 浏览