资料来源: 博士梅兰妮 Pribisko 日元和邓惠琼 — — 加州理工学院
旋转蒸发是有机化学中最常用溶剂去除较高沸点点化合物,感兴趣的技术。旋转蒸发器或”rotovap”,是由化学家莱曼 C.克雷格在 1950 年发明的。Rotovap 的主要用途是干燥和净化样品供下游应用程序。它的速度和能力来处理大量的溶剂使旋转蒸发溶剂去除首选的方法在许多实验室,特别是在涉及低沸点溶剂的实例。
Roto 蒸发需要一瓶真空条件下的机械转动。旋转瓶增加了表面积的溶剂要删除,增加蒸发,率和降低风险的”撞”: 当一个大口袋的溶剂蒸气迅速形成和取代周围的液体。真空降低溶剂,以及提供一种手段,从感兴趣的化合物分离溶剂的沸点。
这个视频会解释过程中旋转蒸发,包括旋转蒸发器或”rotovap”的关键组成部分。将提出建议的最常见的有机溶剂及关键的安全考虑。
1.安装程序
2.旋转蒸发仪操作
旋转蒸发是一种技术通常用于在有机化学中挥发性溶剂去除感兴趣的非挥发性化合物。
1950 年由莱曼 C.克雷格发明旋转蒸发器或 rotovap,温和去除溶剂从使用热结合减压蒸发,干燥,和纯化样品为进一步下游使用的化合物。
虽然有其他的方法来去除溶剂,它是速度和处理能力大卷,在许多的化学实验室,特别是对于低沸点溶剂使旋转蒸发例行的过程。这个视频将演示旋转蒸发包括仪器设置的关键组件的过程。
Rotovap 机械旋转烧瓶含有该化合物在溶液中洗个热水澡。Rotovap 连接到减少压力高于大部分溶剂促进从样品蒸发的抽签一台真空泵。溶剂蒸发同时复合的遗骸。
冷阱充满干冰和丙酮凝聚溶剂蒸气,然后滴入收集瓶。受到的压力减小也有助于减少溶剂蒸发在显著较低的温度比大气压下的沸点。
机械转动的分布的烧瓶,增加蒸发速率的内部,又预备溶剂作为薄膜和减少风险的”碰撞”,发生时一大口袋的溶剂蒸气形式迅速取代周围液体。凹凸陷阱是另一种方式来防止溶剂进入仪器。任何撞的溶剂将收集在的陷阱,和可以被冲洗回进瓶子里。这一进程促进溶剂分离化合物的兴趣至今仍部分保留在瓶里的固体或液体由于其较高的沸点。
现在,您了解旋转蒸发仪的基本知识我们将介绍其操作。
从开始程序填充与干冰和丙酮冷阱,附加收集瓶与联合的剪辑。
权衡清洁圆底烧瓶。添加所需的复合和溶剂的混合物。为了获得最佳结果烧瓶应填充小于半满。
附加一个玻璃凹凸陷阱,以防止该解决方案进入 rotovap 的主要部分。安全与凯剪辑。
使用另一个剪辑,将烧瓶固定和撞到 rotovap 的适配器部分的陷阱。
入水浴开始蒸发降低烧瓶。
开始只烧瓶的旋转。调整转速只烧瓶的尺寸和体积的样品。启动真空和观察装置。因为高真空可能会导致污染和退化的安装程序启动真空强度低。真空是溶剂的在适当的强度时凝结出现冰冷的手指上或在接收瓶或溶剂开始冒泡的时候。在该设置离开真空控制。
打开为水浴热。请记住,在减压的沸点远低于在大气。如果旋转速度太快或太多的热量应用,溶剂会碰到陷阱。在过程中,如果溶剂停止蒸发增加强度的真空。
一旦所有的溶剂已被删除,关闭真空线并停止旋转。慢慢地释放真空转动旋塞阀。
之后这提高从浴瓶和从适配器中删除它。下游用的烧瓶里刮的化合物。核磁共振波谱通常用来验证无溶剂法。如果其他的化合物是需要添加更多的混合到同一瓶和重复的过程。当完成时清空接收瓶,确保适当处置的溶剂。
旋转蒸发仪用于广泛的科学事业。
旋转蒸发例行删除溶剂以下有机合成产品不沉淀。在此示例中,反应混合物从四氢咔唑衍生物的合成 — — 其中有显示高的抗病毒活动 — — 直接受到旋转蒸发要删除乙酸。由此产生的残留物进行净化处理。
Rotovap 也可以用于高分子材料的制备。在此示例中 pH 响应的溶胶-凝胶纳米传感器被合成并收集用旋转蒸发器。这些纳米传感器有与便利运输到哺乳动物细胞的脂质体— —脂质载体分子络合。
最后,旋转蒸发可以加化学萃取。在此示例中胆甾烯基酯提取人血清用氯仿/甲醇混合然后被去除起油性产品。酯被进一步的特点和修改。
你刚看了朱庇特的简介旋转蒸发。你现在应该明白,除去有机溶剂和如何操作旋转蒸发仪的基本理论。
谢谢观赏 !
可以用旋转蒸发来分开许多有机、 无机和高分子材料的溶剂。至关重要的是,所需要的化合物具有比溶剂沸点较低,这种化合物并不构成与溶剂共沸物。如果这些情况属实,旋转蒸发可能是非常有效的技术,将溶剂分离,感兴趣的化合物。低沸点溶剂效果最好,然而,旋转蒸发常用于删除水。高沸点溶剂,如 DMF 和二甲基亚砜更容易删除其他技术,如冻干,然而,用一种很好的真空泵,可以将它们删除使用旋转蒸发。
Rotary evaporation is a technique commonly used in organic chemistry to remove a volatile solvent from a non-volatile compound of interest.
Invented by Lyman C. Craig in 1950 the rotary evaporator, or rotovap, gently removes solvents from compounds using heat combined with reduced pressure to evaporate, dry, and purify samples for further downstream use.
While there are other methods to remove solvents, it is the speed and the ability to handle large volumes that makes rotary evaporation a routine process in many chemistry laboratories, especially for low-boiling-point solvents. This video will demonstrate the process of rotary evaporation including the key components of the apparatus setup.
The rotovap mechanically rotates a flask containing the compound in solution in a heated water bath. The rotovap is connected to a vacuum pump that reduces the pressure above the bulk solvent facilitating the draw of the evaporate away from the sample. The solvent evaporates while the compound remains.
A cold trap filled with dry ice and acetone condenses the solvent vapors which then drip into a collection flask. The decreased pressure also helps to reduce the boiling point of the solvent which evaporates at a significantly lower temperature than at atmospheric pressure.
The mechanical rotation distributes the solvent as a thin film across the interior of the flask, increasing the rate of evaporation and reducing the risk of “bumping”, which occurs when a large pocket of solvent vapor forms rapidly and displaces the surrounding liquid. A bump trap is another way to prevent solvent from entering the apparatus. Any bumped solvent will collect in the trap, and can be rinsed back into the flask. This process facilitates the separation of the solvent from the compound of interest which remains in the flask as a solid or a liquid due to its higher boiling point.
Now that you understand the basics of the rotary evaporator we will cover its operation.
To begin the procedure fill the cold trap with dry ice and acetone and attach the collection flask with a joint clip.
Weigh a clean round-bottom flask. Add the mixture of the desired compound and solvent. For best results the flask should be filled less than half full.
Attach a glass bump trap to prevent the solution from entering the main section of the rotovap. Secure with a Keck clip.
Using another clip attach the flask and bump trap to the adapter portion of the rotovap.
Lower the flask into the water bath to begin the evaporation.
Start the rotation of the flask. Adjust the rotation speed according to the size of the flask and volume of the sample. Start the vacuum and observe the apparatus. Start with a low vacuum strength as high vacuum can cause contamination and degradation of the setup. The vacuum is at an appropriate strength when condensation of the solvent appears on the cold finger or in the receiving flask or when the solvent starts bubbling. Leave the vacuum control at that setting.
Turn on the heat for the water bath. Keep in mind that the boiling point at reduced pressure is significantly lower than at atmospheric. If the speed of the rotation is too fast, or too much heat is applied, the solvent will bump into the trap. Over the course of the process increase the strength of the vacuum if the solvent stops evaporating.
Once all the solvent has been removed, close the vacuum line and stop the rotation. Slowly release the vacuum by turning the stopcock.
Following this raise the flask from the bath and remove it from the adapter. Scrape the compound out of the flask for downstream use. Nuclear magnetic resonance spectroscopy is typically used to verify the absence of the solvent. If additional compound is required add more of the mixture to the same flask and repeat the procedure. When finished empty the receiving flask, ensuring the proper disposal of the solvent.
The rotary evaporator is used in a wide range of scientific endeavors.
Rotary evaporation is routinely performed to remove solvent following organic synthesis for products that do not precipitate. In this example, the reaction mixture from the synthesis of tetrahydrocarbazole derivatives — which have displayed high antiviral activities — was directly subjected to rotary evaporation to remove acetic acid. The resulting residue was purified.
A rotovap can also be used in the preparation of polymeric materials. In this example pH responsive sol-gel nanosensors were synthesized and collected by rotary evaporation. These nanosensors were then be complexed with liposomes — lipid carrier molecules that facilitate transport into mammalian cells.
Finally, rotary evaporation can be coupled with a chemical extraction. In this example cholesteryl esters were extracted from human serum with a chloroform/methanol mixture which was then removed to afford an oily product. The esters were then further characterized and modified.
You’ve just watched JoVE’s introduction to rotary evaporation. You should now understand the underlying theory of the solvent removal and how to operate a rotary evaporator.
Thanks for watching!
Related Videos
Organic Chemistry
34.1K 浏览
Organic Chemistry
166.2K 浏览
Organic Chemistry
70.3K 浏览
Organic Chemistry
41.5K 浏览
Organic Chemistry
55.9K 浏览
Organic Chemistry
79.1K 浏览
Organic Chemistry
705.0K 浏览
Organic Chemistry
157.2K 浏览
Organic Chemistry
236.9K 浏览
Organic Chemistry
212.3K 浏览
Organic Chemistry
332.7K 浏览
Organic Chemistry
32.3K 浏览
Organic Chemistry
288.3K 浏览
Organic Chemistry
358.3K 浏览
Organic Chemistry
246.7K 浏览