We propose a standardized protocol to characterize the cellular composition of late-stage murine atherosclerotic lesions including systematic methods of animal dissection, tissue embedding, sectioning, staining, and analysis of brachiocephalic arteries from atheroprone smooth muscle cell lineage tracing mice.
Atherosclerosis remains the leading cause of death worldwide and, despite countless preclinical studies describing promising therapeutic targets, novel interventions have remained elusive. This is likely due, in part, to a reliance on preclinical prevention models investigating the effects of genetic manipulations or pharmacological treatments on atherosclerosis development rather than the established disease. Also, results of these studies are often confounding because of the use of superficial lesion analyses and a lack of characterization of lesion cell populations. To help overcome these translational hurdles, we propose an increased reliance on intervention models that employ investigation of changes in cellular composition at a single cell level by immunofluorescent staining and confocal microscopy. To this end, we describe a protocol for testing a putative therapeutic agent in a murine intervention model including a systematic approach for animal dissection, embedding, sectioning, staining, and quantification of brachiocephalic artery lesions. In addition, due to the phenotypic diversity of cells within late-stage atherosclerotic lesions, we describe the importance of using cell-specific, inducible lineage tracing mouse systems and how this can be leveraged for unbiased characterization of atherosclerotic lesion cell populations. Together, these strategies may assist vascular biologists to more accurately model therapeutic interventions and analyze atherosclerotic disease and will hopefully translate into a higher rate of success in clinical trials.
Atherosclerosis is the leading cause of morbidity and mortality worldwide underlying the majority of coronary artery disease, peripheral artery diseases, and stroke. Late-stage coronary atherosclerosis can lead to severe complications including myocardial infraction accounting for nearly 16% of world population mortality1,2. Due to its devastating impact on public health, substantial effort has been made to decipher the mechanisms driving atherosclerosis progression, as well as to develop novel therapeutic strategies. Yet, the Likelihood of Approval (LOA) rate of clinical trials for cardiovascular disease is among the lowest when compared with other clinical fields (only 8.7% for phase I)3. This can be explained in part by many barriers that atherosclerosis poses to efficient drug development including its nearly ubiquitous nature, clinically-silent progression, and significant disease heterogeneity. Moreover, the suboptimal design of preclinical animal studies can also be accounted for the lack of success in clinical translation. Specifically, we believe it is necessary to implement intervention studies whenever possible to investigate the efficacy of therapeutic strategies. Also, there is a critical need to perform standardized procedures for lesion analyses including advanced characterization of late-stage atherosclerotic lesion cellular composition by fate mapping and phenotyping.
The vast majority of atherosclerosis studies focus on models of atherosclerosis prevention consisting of drug treatment or gene manipulation (knockout or knock-in) in healthy young mice, prior to the disease initiation and progression. These studies have uncovered a large number of genes and signaling molecules that play a role in atherosclerosis development. However, most of these targets failed to translate to efficient therapies in human. Indeed, it is difficult to extrapolate the effect a therapy has on healthy young mice to elderly patients with advanced atherosclerotic lesions. As such, the implementation of intervention studies in the preclinical experimental pipeline likely provides a more accurate depiction of the relevance and efficacy of a new therapeutic. The idea is supported by the strikingly divergent effects of inhibiting the pro-inflammatory cytokine Interleukin-1β (IL-1β) when employing a prevention4,5,6 or intervention strategy7. Differences between prevention and intervention studies suggest that different cellular processes occur at different phases of atherosclerosis development and highlights the fact that prevention studies are likely insufficient to model the clinical scenario adequately.
The American Heart Association recently published a scientific statement detailing recommendations for proper experimental design, procedural standardization, analysis, and reporting of animal atherosclerosis studies8. It highlights the benefits and limitations of predominant techniques used in the field. For example, en face Sudan IV staining of the aorta is often performed as a first read-out. Although en face Sudan IV staining of lipid deposition is a suitable method for assessment of global plaque burden, it is unable to distinguish early-stage fatty streak lesions from more advanced late-stage lesions. As such, the interpretation of en face staining is often ambiguous and superficial9. Careful analysis of tissue cross sections using the morphologic parameters vessel, lesion, and lumen size and quantification of indices of lesion stability provides a more accurate understanding of the effect of an experiment.
Finally, human histopathology studies have suggested that cellular composition is a better predictor of rupture than the lesion size itself, with lesions poor in smooth muscle cells (SMC) and rich in macrophages being more susceptible to rupture10,11. These observations were based on staining for markers classically used for cell identification (i.e., ACTA2 for SMC and LGALS3 or CD68 for macrophages). However, the expression of these markers is not strictly restricted to a single cell type in atherosclerotic lesions due to the plasticity of multiple lineages including SMC, endothelial cells and myeloid cells12. In particular, the unambiguous identification of SMC within atherosclerotic lesion was virtually impossible until the past decade because of the property of these cells to dedifferentiate and repress their lineage-specific marker genes (a process referred as phenotypic switching) in injured or diseased vessels13. This limitation in SMC identification has been circumvented by the development of lineage tracing7,14,15,16,17,18,19,20,21,22,23,24. It consists of permanently labelling SMC and their progeny to track their fate and phenotypic evolution during atherosclerosis progression by using a combination of the expression of Cre recombinase driven by SMC-specific promoters (i.e., Myh117,15,17,18,19,20,21,22,23,24, Acta225,26 and, SM22α14,16) and the activation of reporters (e.g., fluorescent proteins, β-galactosidase) [reviewed in Bentzon and Majesky 201827]. In one of the first studies employing SMC lineage tracing outside of embryogenesis setting, Speer et al.14 provided evidence that SMC can modulate their phenotype and transdifferentiate into chondrogenic cells during vascular calcification by using an SM22α Cre R26R LacZ lineage tracing model. Although these studies pioneered SMC lineage tracing, they were partially equivocal in that any given non-SMC expressing SM22α in the setting of the disease would be labeled by the reporter. This limitation has been bypassed by the development and use of tamoxifen-inducible Cre ERT/LoxP permitting a temporal control of cell labeling. Cell labeling occurs exclusively during tamoxifen delivery and will be restricted to the cell expressing the cell type-specific promoter driving Cre ERT expression at the time of tamoxifen exposure, avoiding tracing of alternative cell types activating Cre in the setting of disease progression. For lineage tracing of SMC in atherosclerosis, the tamoxifen-inducible Myh11-Cre/ERT2 transgene associated with fluorescent reporters (eYFP7,15,17,18,21, mTmG19,25, Confetti20,22,23 for clonal expansion studies) has demonstrated a remarkable efficiency and specificity in SMC labeling and has been used to fate map SMC populations in atherosclerotic lesions in recent studies. Importantly, these studies revealed that: 1) 80% of SMC within advanced atherosclerotic lesions do not express any conventional SMC markers (ACTA2, MYH11) used in immunohistological analysis and therefore would have been misidentified without lineage tracing17; 2) subsets of SMC express markers of alternate cell types including macrophage markers or mesenchymal stem cell markers16,17,19; and 3) SMC invest and populate the atherosclerotic lesion by oligoclonal expansion and SMC clones retain plasticity to transition to phenotypically different populations20,23. To summarize, it is now clear that smooth muscle cells present a remarkable phenotypic diversity in atherosclerotic lesions and can have beneficial or detrimental roles on lesion pathogenesis depending on the nature of their phenotypic transitions. These discoveries represent a remarkable new therapeutic avenue for targeting SMC athero-promoting phenotypic transitions in late-stage atherosclerosis.
Herein, we propose a standardized protocol for analyzing late-stage murine atherosclerotic lesions including systematic methods for animal dissection, embedding, sectioning, staining, and quantification of brachiocephalic artery lesions. To determine the effect of Interleukin-1β inhibition on SMC fate and phenotype, we used SMC lineage tracing ApoE-/- mice fed a western diet for 18 weeks before receiving weekly injections of an anti-IL1β antibody or isotype-matched IgG control.
Animal breeding, handling and procedures were approved by the University of Virginia and the University of Pittsburgh Institutional Animal Care and Use Committee.
1. Generation of SMC lineage tracing mice
2. Smooth muscle cell lineage-tracing mouse diet and treatments
3. Harvesting of the Brachiocephalic Artery (BCA)
4. Tissue processing and sectioning
5. Immunofluorescent staining
NOTE: A complete characterization of atherosclerotic lesions includes assessment of morphological parameters and indices of plaque stability or instability and cellular composition that will not be the focus of the present protocol. Lesion morphology, collagen content, and intraplaque hemorrhage can be analyzed by Movat7,17, PicroSirius Red 7,31, Ter119 staining 7,18, respectively. Here, we will describe the protocol for analyzing the cellular composition of lesions.
6. Confocal microscopy
NOTE: The use of a confocal microscope and z-stack acquisition is critical for single-cell counting.
7. Single cell counting
Myh11-Cre/ERT2 R26R-EYFP Apoe-/- mice were injected with tamoxifen between six and eight weeks of age before being fed a high fat diet. At 18 weeks of high fat diet feeding, two groups of eight mice were treated weekly with either a mouse monoclonal anti-IL-1β antibody or an isotype-matched IgG control at 10 mg/kg for 8 weeks (Figure 1)7. Mice were sacrificed and perfused with a 4% PFA-PBS solution. Brachiocephalic arteries were dissected, processed, and sectioned as described above (Figure 2 and Figure 3).
After immunofluorescent staining with antibodies targeting the lineage tracing reporter (YFP) and phenotypic markers (ACTA2, LGALS3, RUNX2), a thickness of 8-10 µm of the BCA cross sections was imaged using a confocal microscope. Images of each individual staining, DAPI (nuclear staining), and DIC were acquired. Delineation of regions of interest for single cell counting (lesion, fibrous cap) was performed using DIC images (Figure 4). Single cell counting to determine the abundance of different SMC-derived populations was performed using ImageJ (Figure 5).
We present two representative immunofluorescent staining and single counting assessing the effect of IL-1β inhibition on cellular composition in advanced atherosclerotic lesions. First, staining was done for the SMC lineage tracing reporter YFP, the SMC marker ACTA2, and the macrophage marker LGALS3 in cross sections at two different locations of the BCA (480 µm and 780 µm from the aortic arch) (Figure 6). Single cell counting analysis in the fibrous cap region of these cross section were performed, and remarkable differences were found in the cellular composition of the fibrous cap area between mice treated with the anti-IL-1β antibody and mice treated with the isotype-matched IgG control (Figure 6A). Inhibition of IL-1β was associated with a decrease in YFP+ SMC and an increase in LGALS3+ cells (Figure 6B). Regarding the phenotypes of SMC populations, a decrease in the number of YFP+ACTA2+ SMC was observed, whereas the relative number of SMC-derived macrophages (YFP+LGALS3+) was significantly increased at both BCA locations (Figure 6C).
Finally, we investigated the effect of IL-1β inhibition on the SMC phenotypic transition into chondrogenic cells. This phenotypic transition is an important driver of vascular calcification, major feature of late-stage atherosclerosis14,32,33. BCA cross-sections were stained for the SMC lineage tracing reporter YFP, the osteochondrogenic marker RUNX2, and the macrophage marker LGALS3 (Figure 7A). The abundance and the origin of the RUNX2+ chondrogenic cells were characterized within the lesion area in our two experimental groups. We found that inhibition of IL-1β did not impact the overall number of RUNX2+ cells within the lesion, nor the proportion of SMC-derived (YFP+RUNX2+) and macrophage-derived (YFP-LGALS3+RUNX2+) chondrogenic cells (Figure 7B).
Figure 1: Intervention studies in Smooth Muscle cell lineage tracing mice. (A) Schematic representation of the Myh11-Cre/ERT2 R26R-EYFP Apoe-/- tamoxifen-inducible SMC specific lineage tracing mouse model. Treatment with tamoxifen induces recombination of the R26R-YFP locus and the excision of a STOP codon and the permanent expression of YFP by SMC. (B) Schematic of intervention studies in which Myh11-Cre/ERT2 R26R-EYFP Apoe-/- mice fed a Western diet for 18 weeks were injected weekly with the IL-1β antibody or an isotype-matched IgG control antibody at a concentration of 10 mg/kg for 8 weeks. Please click here to view a larger version of this figure.
Figure 2: Brachiocephalic artery dissection. (A) Schematic of a gravity driven perfusion system. The system is set up at a precise height allowing perfusion at a pressure close to the average systolic blood pressure in mice. The pressure slightly varies with volume height as liquid is used during perfusion between height h1 and h2. (B) Equation for calculation of the pressure of static fluids and determination of the height to reach a pressure of perfusion equal to the C57Bl6 mouse average systolic blood pressure. (C) Pictures of the proximal aorta and branching arteries in C57Bl6 mouse fed a chow diet (left picture) and Apoe-/- mouse fed a high fat diet for 26 weeks (right picture). The asterisk indicates the presence of atherosclerotic lesions. (D) Schematic of the proximal aorta and branching arteries. Red arrows represent cuts for isolation of the right carotid and brachiocephalic artery isolation and numbers indicate the order of the cuts. Please click here to view a larger version of this figure.
Figure 3: Tissue processing, embedding, and sectioning. (A) Photograph of an embedding cassette with BCA tissue. The BCA is positioned on a foam pad. (B) Zoom-in of the BCA positioned on the foam pad. The BCA is oriented with the aortic arch close to the label part of the cassette and the carotid straightened vertically. Scale bar: 1 cm. (C) Schematic of paraffin block after embedding of the brachiocephalic artery. (D) Schematic of serial slides with 10 µm-thick serial sections with indication of the distance from the aortic arch. Please click here to view a larger version of this figure.
Figure 4: Delineation of the atherosclerotic lesion and fibrous cap area. (A) Representative micrographs of DIC image atherosclerotic lesion in brachiocephalic artery cross-sections from Myh11-Cre/ERT2 R26R-EYFP Apoe-/-. The luminal and the internal elastic lamina borders are localized by white and yellow arrows, respectively (left panel). The lesion area is delineated by a dashed line (right panel) Scale bar: 100 µm. (B) Representative micrographs of DIC and ACTA2 staining. Double-head arrows show the thickness of the ACTA2 staining within the area underlaying the lumen defining the fibrous cap area. (C) Quantification of the subluminal ACTA2+ thickness in Myh11-Cre/ERT2 R26R-EYFP Apoe-/- fed a high-fat diet for 18, 21 and 26 weeks. Using this strain of mice, the fibrous cap has an average thickness of 25-30 µm in advance atherosclerotic lesions. Results are expressed as mean ± SEM. (D) Delineation of a fixed 30 µm thick fibrous cap area for single cell counting. Please click here to view a larger version of this figure.
Figure 5: Single cell counting using ImageJ. Screen captures illustrating key steps of single cell counting with ImageJ on images acquired by confocal microscopy. (A) Each individual staining channel and individual z-stack are visible by scrolling c: and z: bars at the bottom of the image. Staining channels are pseudo-colored using the Channel panel (1) Staining channels (YFP, LGALS3, ACTA2, DAPI for nuclear staining and DIC) are merged using the Merge Channel panel (2). (B) Results of channel merging for YFP, LGALS3, ACTA2, DAPI, and DIC. (C) Nucleus counting based on DAPI staining using the Counting icon (1) and Point Tool panel (2). A different counter channel is used for each cell population (3). The number of events counted is indicated below the counter channel (4). White rectangle: region enlarged on the right. (D) Representative image of single cell counting within the fibrous cap area (dashed line) for multiple cell populations including DAPI (yellow dots), YFP+ cells (magenta dots), YFP–LGALS3+ cells (cyan dots), YFP+LGALS3+ cells (orange dots), YFP+ACTA2+ cells (green dots), and YFP–ACTA2+ cells (dark blue dots). White rectangle: region enlarged on the right. Please click here to view a larger version of this figure.
Figure 6: Characterization of the effects of IL-1β inhibition on the cellular composition of the fibrous cap area at two distinct BCA locations of SMC lineage tracing Apoe-/- mice. (A) BCA cross sections at 480 µm and 780 µm from the aortic arch from mice treated with the IL-1β antibody or the IgG control as shown in Figure 1 were stained for YFP, LGALS3, and DAPI (nuclear staining) and the section was imaged by DIC. Immunofluorescent channels were merged (bottom right panels). The dashed lines delineate the fibrous cap regions. Scale bars: 100 µm. (B) Single cell counting reveals that inhibition of IL-1β is associated with a significant decrease in YFP+ cells and an increase in LGALS3+ cells within the fibrous cap area. C) Within the YFP+ cell population, a decrease in YFP+ACTA2+ and an increase in YFP+LGALS3+ populations are observed. Results are expressed as mean ± SEM. Statistical analysis: unpaired multiple t-test. Please click here to view a larger version of this figure.
Figure 7: Effect of IL-1β inhibition on the number of RUNX2+ chondrogenic cells with advanced atherosclerotic lesions. A) BCA cross sections are stained for YFP, LGALS3, RUNX2 and DAPI (nuclear staining), and all channels were merged (bottom panels). The dashed lines delineate the lesion area. Scale bars: 100 µm. B) Single cell counting shows that inhibition of IL-1β does not impact the total number of RUNX2+ cells within the lesion nor the proportion of RUNX2+ cells from SMC origin (YFP+RUNX2+; YFP+LGALS3+RUNX2+) and myeloid origin (YFP–LGALS3+RUNX2+). Results are expressed as mean SEM. Statistical analysis: Unpaired multiple t-test. Please click here to view a larger version of this figure.
Despite decades of research and technical advances in studying atherosclerosis, the field has a disappointing history of translating scientific findings to clinical therapies34,35. This phenomenon may be explained in part by discrepancies in animal models, experimental designs, and lesion analyses. Herein, we describe an experimental pipeline that we used to analyze the cellular composition in advanced atherosclerotic lesions using lineage tracing mice7. This method allows for a meticulous investigation of cell fate mapping and phenotyping, which are key parameters controlled by potential mechanisms at play in advanced atherosclerotic lesions.
The SMC-lineage tracing mouse model is a powerful tool to accurately track the fate and phenotypic modulations of this lineage and their contribution to atherosclerosis pathogenesis. The tamoxifen-inducible Cre-loxP system enables labeling of mature vascular SMC expressing MYH11 prior to the initiation of atherosclerosis. Compelling evidence using this system has demonstrated that atherosclerotic plaques are highly plastic and vascular SMC can undergo phenotypic switching, losing their contractile phenotype and SMC-specific markers, proliferating, migrating, and even transdifferentiating into macrophage-like cells17,18. In the present protocol, we show how lineage-tracing detection and immunofluorescent staining for markers of interest can be integrated to precisely determine phenotypic transitions undertaken by SMC and their relative frequency among other SMC populations.
This methodology is highly complementary with other assays frequently performed in the field. First, assessment of atherosclerotic lesion burden by en face aortic preparations combined with lipid staining by Sudan IV is widely used due to its convenience and speed. However, this is an inadequate measure of key morphological parameters such as lesion size, lumen size, and vessel remodeling. Staining of en face aortic preparation by Sudan IV to visualize lipid deposition can be used to quantify relative lesion area within the aorta, but it can provide inconsistent staining of lesions, as only the neutral lipid component is visualized while regions occupied by other constituents, such as extracellular matrix, usually are neglected8. Moreover, en face staining is unable to inform about the lesion morphology and cannot distinguish between fatty streaks and advanced lesions. Vessel morphology is an important parameter used for evaluating atherosclerosis stage and rupture risk, including lesion size, lumen diameter, vessel remodeling7,36,37. These analyses require the conservation of the vessel morphology for proper quantification. Importantly, protocols for investigation of morphological parameters greatly overlap with the protocol detailed here. In particular, they rely on the use of a gravity-driven vascular perfusion system for PBS and fixative perfusion to provide greater consistency in the pressure applied. The gravity-driven infiltration system guarantees a constant flow speed and pressure between each independent mouse and prevents the inconsistency of manual force-driven perfusion between independent experiments or researchers. The gravity perfusion system should be set up to induce perfusion at a pressure near the average murine blood pressure (70-120 mmHg). Second, we provided a standardized and systematic method of embedding and sectioning for the brachiocephalic artery. By defining the start site of sectioning and quantifying the lesion area at multiple locations throughout the brachiocephalic artery, we can limit the random variation that comes with limited sampling.
Flow cytometry is another technique highly complementary with immunofluorescent staining coupled with single cell counting that has been widely used in quantifying cell populations within atherosclerotic lesions38. It consists of the digestion of mouse aorta and labeling of the released cells with fluorescent antibodies. Flow cytometry offers a quantitative analysis of the cellular populations present in the aorta. However, like all technologies, flow cytometry has limitations. Despite the distinct benefit of fitting a large array of simultaneous markers, there is a complete loss of spatial resolution, and it becomes unclear whether a cell population is enriched in the fibrous cap or the necrotic core. Additionally, there is a risk of dilution effect since flow cytometry requires a large number of cells and often does not focus only on atherosclerotic areas. For this reason, immunofluorescence and flow cytometry can be used in a complementary manner to allow for both high dimensional profiling and lesion localization.
Finally, the protocol is focused on the quantification of SMC populations in BCA advanced lesion using paraformaldehyde-fixed and paraffin-embedded tissue sections. However, this protocol can be used to investigate other vascular beds including the aortic root or the abdominal aorta, two vascular territories subject to atherosclerosis development. Systematic processing and sectioning of the aortic root have been previously well described8,39. As atherosclerosis develops at different locations and that genetic manipulation or therapeutic intervention can non-homogenously impact these sites21, it is important to investigate as many vascular beds as possible to draw accurate conclusions. Immunofluorescent staining and single cell counting can also be performed using frozen sections. This might be necessary due to the incompatibility of antibodies with paraffin sections. Although the animal perfusion and tissue embedding will differ from this protocol, investigators can follow the rest of the experimental procedures described here.
In conclusion, the techniques described here outline a systematic approach to analyzing lesion cell populations and phenotypes in late-stage murine atherosclerosis. This protocol can serve as a template to investigate lesion populations by immunofluorescent staining in all types of experimental design including early and late-stage atherosclerosis, as well as prevention and intervention studies.
The authors have nothing to disclose.
We thank the Center for Biologic Imaging (supported by NIH 1S10OD019973-01) at the University of Pittsburgh for their assistance. This work was supported by is supported by Scientific Development Grant 15SDG25860021 from the American Heart Association to D.G. R.A.B. was supported by NIH grant F30 HL136188.
16% Paraformaldehyde aqueous solution | Electron Microscopy Sciences | RT 15710 | Tissue perfusion and fixation |
23G butterfly needle | Fisher | BD367342 | |
25G needle | Fisher | 14-821-13D | |
A1 Confocal microscope | Nikon | Confocal microscope | |
ACTA2-FITC antibody (mouse) | Sigma Aldrich | F3777 | Primary Antibody |
Alexa-647 anti goat | Invitrogen | A-21447 | Secondary antibody |
Antigen Unmasking solution, Citric acid based | Vector Labs | H-3300 | Antigen retrieval solution |
Chow Diet | Harlan Teklad | TD.7012 | |
Coverslip | Fisher | 12-544-14 | Any 50 x 24 mm cover glass |
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) | Invitrogen | D1306 | Nucleus fluorescent counterstaining |
Donkey Alexa-488 anti-rabbit | Invitrogen | A-21206 | Secondary antibody |
Donkey Alexa-555 anti-rat | Abcam | ab150154 | Secondary antibody |
DPBS 10X without Calcium and Magnesium | Gibco | 14200166 | PBS for solution dilutions and washes. Dilute to 1x in deionized water |
Embedding cassette | Fisher | 15-182-701D | |
ETDA vacuum tube | Fisher | 02-685-2B | |
Ethanol 200 proof | Decon | 2701 | |
Foam pad | Fisher | 22-222-012 | |
Gelatin from cold water fish skin | Sigma Aldrich | G7765 | |
GFP antibody (goat) | abcam | ab6673 | Primary antibody |
goat IgG control | Vector Labs | I-5000 | IgG control |
High Fat Diet | Harlan Teklad | TD.88137 | |
ImageJ | NIH | Computer program https://imagej.nih.gov/ij/ | |
LGALS3 antibody (rat) | Cedarlane | CL8942AP | Primary antibody |
LSM700 confocal microscope | Zeiss | Confocal microscope | |
Microscope Slides, Superfrost Plus | Fisher | 12-550-15 | |
Microtome blades | Fisher | 30-538-35 | |
Mouse IgG control | Vector Labs | I-2000 | IgG control |
NIS element imaging software | Nikon | Imaging software for z-stack image acquisition | |
Normal Horse serum | Sigma Aldrich | H1270 | |
Pap Pen | Fisher | 50-550-221 | |
Peanut oil | Sigma | P2144 | |
Prolong gold Antifade mountant | Invitrogen | P36930 | Mounting medium |
Rabbit IgG control | Vector Labs | I-1000 | IgG control |
Rat IgG control | Vector Labs | I-4000 | IgG control |
RUNX2 antibody (rabbit) | Abcam | ab192256 | Primary Antibody |
Syringe | BD | 309628 | 1 ml syringe |
Tamoxifen | Sigma | T5648 | |
Xylene | Fisher | X55K-4 | |
Zen imaging software | Zeiss | Imaging software for z-stack image acquisition |