Summary

प्रसवोत्तर माउस मस्तिष्क के विकास में जीन फंक्शन के वायरस आधारित Cre पुनर्संयोजन का उपयोग करके मोज़ेक विश्लेषण

Published: August 01, 2011
doi:

Summary

एक<em> Vivo में</em> प्रसव के बाद दिमाग में जीन समारोह का परीक्षण विधि वर्णित है. पुनः संयोजक Cre और / या एक फ्लोरोसेंट प्रोटीन व्यक्त AAVs नवजात माउस मस्तिष्क में इंजेक्ट कर रहे हैं. मोज़ेक जीन निष्क्रियता और विरल neuronal लेबलिंग हासिल कर रहे हैं, तंत्रिका सर्किट विकास के लिए महत्वपूर्ण प्रक्रियाओं में जीन समारोह का तेजी से विश्लेषण की अनुमति है.

Abstract

Normal brain function relies not only on embryonic development when major neuronal pathways are established, but also on postnatal development when neural circuits are matured and refined. Misregulation at this stage may lead to neurological and psychiatric disorders such as autism and schizophrenia1,2. Many genes have been studied in the prenatal brain and found crucial to many developmental processes3-5. However, their function in the postnatal brain is largely unknown, partly because their deletion in mice often leads to lethality during neonatal development, and partly because their requirement in early development hampers the postnatal analysis. To overcome these obstacles, floxed alleles of these genes are currently being generated in mice 6. When combined with transgenic alleles that express Cre recombinase in specific cell types, conditional deletion can be achieved to study gene function in the postnatal brain. However, this method requires additional alleles and extra time (3-6 months) to generate the mice with appropriate genotypes, thereby limiting the expansion of the genetic analysis to a large scale in the mouse brain.

Here we demonstrate a complementary approach that uses virally-expressed Cre to study these floxed alleles rapidly and systematically in postnatal brain development. By injecting recombinant adeno-associated viruses (rAAVs)7,8 encoding Cre into the neonatal brain, we are able to delete the gene of interest in different regions of the brain. By controlling the viral titer and coexpressing a fluorescent protein marker, we can simultaneously achieve mosaic gene inactivation and sparse neuronal labeling. This method bypasses the requirement of many genes in early development, and allows us to study their cell autonomous function in many critical processes in postnatal brain development, including axonal and dendritic growth, branching, and tiling, as well as synapse formation and refinement. This method has been used successfully in our own lab (unpublished results) and others8,9, and can be extended to other viruses, such as lentivirus 9, as well as to the expression of shRNA or dominant active proteins 10. Furthermore, by combining this technique with electrophysiology as well as recently-developed optical imaging tools 11, this method provides a new strategy to study how genetic pathways influence neural circuit development and function in mice and rats.

Protocol

1. इंजेक्शन के लिए तैयारी वायरस rAAVs सिफारिश वाणिज्यिक विक्रेता से खरीदे गए थे, लेकिन वे भी एक ही प्रयोगशाला में उत्पादित किया जा सकता है (नीचे चर्चा देखें). वायरस समाधान आमतौर पर ~ 1×10 12 मिली लीटर प्रत…

Discussion

नवजात वायरल इंजेक्शन विधि यहाँ प्रस्तुत करने के लिए एक सरल और तेजी से प्रसव के बाद मस्तिष्क के विकास के अध्ययन के लिए vivo मोज़ाइक में उत्पन्न तरीका प्रदान करता है. विधि floxed alleles कि वर्तमान में उपलब्ध …

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

इस काम एनआईएच (NINDS) से एक RO1 अनुदान द्वारा समर्थित है.

Materials

Name of the reagent Company Catalogue number Comments (optional)
rAAV8-Cre, -GFP, -DsRed, Vector Biolabs #7060, #7061, custom order http://www.vectorbiolabs.com
Harvard Pump 11 Plus Harvard Apparatus #702208 (No foot pedal port)
Retinal Pigment Epithelium Injection Kit World Precision Instruments RPE-KIT Contains connective tubing, injection needles (36G), and needle holder
NanoFil Syringe, 100μl World Precision Instruments NANOFIL-100 Includes reusable loading needle
D-PBS Invitrogen 14040-117  
GFP antibody Aves GFP-1020  
DsRed antibody Clontech 632496  
Heating Block VWR 97042-610  
ROSA26R mouse Jackson Laboratory 003309  

Referencias

  1. Geschwind, D. H., Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 17, 103-111 (2007).
  2. Giedd, J. N., Rapoport, J. L. Structural MRI of pediatric brain development: what have we learned and where are we going?. Neuron. 67, 728-734 (2010).
  3. Chedotal, A., Richards, L. J. Wiring the brain: the biology of neuronal guidance. Cold Spring Harb Perspect Biol. 2, (2010).
  4. Shen, K., Cowan, C. W. Guidance molecules in synapse formation and plasticity. Cold Spring Harb Perspect Biol. 2, (2010).
  5. Chen, S. Y., Cheng, H. J. Functions of axon guidance molecules in synapse formation. Curr Opin Neurobiol. 19, 471-478 (2009).
  6. Guan, C., Ye, C., Yang, X., Gao, J. A review of current large-scale mouse knockout efforts. Genesis. 48, 73-85 (2010).
  7. Tenenbaum, L. Recombinant AAV-mediated gene delivery to the central nervous system. J Gene Med. 6, 212-222 (2004).
  8. Broekman, M. L., Comer, L. A., Hyman, B. T., Sena-Esteves, M. Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or -2 serotypes for widespread gene delivery to the neonatal mouse brain. Neurociencias. 138, 501-510 (2006).
  9. Pilpel, N., Landeck, N., Klugmann, M., Seeburg, P. H., Schwarz, M. K. Rapid reproducible transduction of select forebrain regions by targeted recombinant virus injection into the neonatal mouse brain. J Neurosci Methods. 182, 55-63 (2009).
  10. Szulc, J., Aebischer, P. Conditional gene expression and knockdown using lentivirus vectors encoding shRNA. Methods Mol Biol. 434, 291-309 (2008).
  11. Pan, F., Gan, W. B. Two-photon imaging of dendritic spine development in the mouse cortex. Dev Neurobiol. 68, 771-778 (2008).
  12. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 21, 70-701 (1999).
  13. Madisen, L. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 13, 133-1340 (2010).
  14. Tong, C., Li, P., Wu, N. L., Yan, Y., Ying, Q. L. Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature. 467, 211-213 (2010).

Play Video

Citar este artículo
Gibson, D. A., Ma, L. Mosaic Analysis of Gene Function in Postnatal Mouse Brain Development by Using Virus-based Cre Recombination. J. Vis. Exp. (54), e2823, doi:10.3791/2823 (2011).

View Video