Waiting
Procesando inicio de sesión ...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Engineering

定期駆動することによって光学的に閉じ込められた超低温フェルミガスを冷却

Published: March 30, 2017 doi: 10.3791/55409

Introduction

過去20年間では、様々な冷却技術は、ボーズ・アインシュタイン凝縮(BEC)を生成するために開発されており、ホット原子蒸気1、2、3、4、5からフェルミガス(DFG)を縮退します。 BECとDFG遠通常地球上又は宇宙に見られる以下の極低温に存在する物質の新規な相、絶対零温度以上程度の通常百万分の一です。このような低い温度を得るためには、ほとんどの冷却方法は、蒸発によって原子を冷却するためのトラップの可能性を下げることに依存しています。しかし、低下方式は、ガスが量子レジーム6に到達し、冷却効率を制限する原子の衝突速度を低下させます。この記事では、蒸発によってずにODTで極低温フェルミガスを冷却するための「排出」の方法を提示しますトラップの深さを下げます。このメソッドは、パラメータが低下スキーム7、8、9に比べていくつかの利点を示す、7を冷却する我々の最近の研究に基づいています。

パラメトリック方式のキーアイデアは、トラッピングポテンシャルの縁の近くに高温の原子が中心に冷たい原子よりも低いトラップ周波数を感じさせる交差ビームODTの非調和性を用いることです。この非調和性は高エネルギーの原子と共振周波数でトラップポテンシャルを変調する際に高温の原子を選択的にトラップから排出することを可能にします。

パラメトリック冷却の実験プロトコールは、縮退温度付近フェルミガスを非干渉予め冷却を必要とします。このプロトコルを実装するために、音響光学変調器(AOM)はcontrollinによってトラップビームの強度を変調するために使用されますG変調周波数、深さおよび時間。冷却効果を確認するために、原子雲は、共振レーザ光は、電荷結合素子(CCD)カメラによって捕捉され、原子雲吸収影を照明飛行時間型(TOF)の吸収イメージングによってプローブされます。このような原子番号、エネルギー、および温度などの雲特性は、カラムの密度によって決定されます。冷却効果を特徴づけるために、我々は、様々な変調時間にクラウドエネルギーの依存性を測定します。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

注:このプロトコルは、以下の機器を含む自作極低温原子の装置が必要:2つの外部空洞ダイオードレーザ(ECDL)、ECDLのロックの設定は10ロック周波数オフセット、ODT用ファイバレーザ、レーザ強度変調用AOMソース生成器と、無線周波数(RF)アンテナシステムとパワーアンプ、CCDカメラによる吸収イメージングシステム、タイミング・シーケンス及びデータ取得(DAQ)ためのコンピュータプログラム、撮像処理及びデータ分析のためのコンピュータプログラム、 MOTとバイアス磁界用電磁石の対、及び( 図1に示されている)より遅い6 Li蒸気オーブンとゼーマン含む超高真空チャンバ。

注意:異なるパワーと波長の3つのレーザが使用されています。関連するレーザー安全データシートを参照し、適切なレーザー安全ゴーグルを選択してください。

1.タイミング続きROL

注:すべてのタイミングシーケンスは、タイミング制御プログラムを通じて128チャネルPCI DAQカードによって制御されています。タイミングシーケンスの解像度は100マイクロ秒です。いくつかの計装制御プログラムは、このようなファイバレーザ任意関数発生器(AFG)、ODT AFG、任意のパルス発生器(APG)、パラメトリック変調AFG、MOTマルチプレクサ、RF発生器などのように、機器の設定を制御するために使用されます。

  1. タイミング制御プログラムや機器の制御プログラムを開きます。
    注:タイミング制御プログラムは、タイミング制御ファイルを実行するための制御端子にTTL(トランジスタ・トランジスタ・ロジック)信号を送信します。いくつかの機器はリアルタイム制御のためのGPIB(IEEE 488)によってコンピュータに接続されています。
  2. 実験タイミングファイルを書き込み、 表1に示すようなタイミング・パラメータを設定します。
    注:MOTタイミングシーケンスの後にも、図2で示されています。
  3. 2. CCDカメラの準備

    注:CCDカメラは、冷原子の主な診断ツールである冷原子の吸収画像を記録するために使用されます。

    1. CCDカメラのドライバおよびその制御プログラムをオンにします。粒子画像流速測定法(PIV)モード11にCCDカメラを設定します。 5 msにCCDの露光時間を設定します。
      注:PIVモードは、吸収画像の信号対雑音比を増加させる信号と基準フレームとの間の時間のギャップを減少させます。
    2. CCDの露出を制御するために外部トリガを使用します
      注:CCDトリガ時間は、表1に列挙されています。

    3. 671 nmのレーザー調製

    注:500 mWの出力パワーと671 nmの単一周波数ECDLは、MOT冷却とトラッピングビームを生成するために使用されます。 35ミリワットの別の671 nmのECDLは吸収イメージングのために使用されます。デジタルレーザ現在の変調方式(DLCM)レーザ周波数安定化10に適用されます。関連6つのLiのエネルギーレベルは、 図3aに示されています。 20±1℃の室温安定性は、レーザ周波数ロックの最適な安定性のために必要とされます。

    1. MOTレーザー準備
      注:DLCM方式の光学セットアップと関連性の高い結果を参考10に提示されています。
      1. 6リチウム原子蒸気セルヒーターの電源を入れ、340°Cにそれを温めます。
      2. 1時間AOMロックレーザを温めます。
      3. レーザー周波数ロックコントローラをオンにして、そのソフトウェアを開きます。レーザー回折格子とソフトウェアでECDLの電流変調をオンにします。
        注:格子変調の変調周波数及び振幅は、それぞれ5 Hzから1.0 Vに設定されています。電流変調の変調周波数と振幅はレーザ線幅を減少させるために100kHzのそれぞれ0.0015 VのPPに設定されている10
      4. ECDLの排出をオンにします。
        注:レーザ光がMOT光学セットアップを通過して実験真空チャンバに達します。
      5. 図3bに示すように6のLi D 2線のロックインエラー信号は、観察されるまでわずかに調整するために手動でレーザ周波数をECDLレーザの電流を調整します。
      6. 2 2 P 3/2遷移→2 2 S 1/2(F = 3/2)に制御ソフトウェアのロックポイントを設定する( 図3aを参照して、 図3(b))。この遷移にレーザ周波数をロックし、遷移10の中心にロック点を調整します。
        注:レーザ周波数がロックされると、ロックインエラー信号がロック点付近の周波数変動に対応するロック点における小さな変動を示します。
    2. イメージングレーザー調製
      注:オフセットロック方式の光学セットアップと関連する結果は文献10に示されています。
      1. オフセットロックRF信号発生器をオンにします。
      2. 格子の変調をオンにし、そして2 Vに変調振幅を大きく
      3. 3.1.4.-3.1.5における周波数チューニング・プロセスを繰り返します。オシロスコープにおけるレーザ周波数ビーティング誤差信号及びRFスペクトルアナライザを取得します。
      4. オフセット2つのPIDフィードバックモジュールを介してロックのビート信号に対してレーザ周波数をロックします。
        注:レーザ周波数がロックされると、RFスペクトルにおけるビート信号のスペクトルは、ロックポイントで停止します。

    4.吸収イメージング調製

    注:原子が2つの画像フレームを必要とする吸収イメージングでプローブされます。原子を有する最初のものは、信号フレームであり、且つ原子ことなく、第2の一方は基準フレームです。

    1. APGをオンにしますおよびイメージングビームAOM。
    2. 10マイクロ秒に撮像パルス持続時間を設定し、5.5秒に2つの撮像フレームの間の分離時間を設定します。
    3. 約0.3 私が座っに結像ビーム強度を設定し、 私が座っここ= 2.54ミリワット/ cm 2で 6のLi D 2線の飽和吸収強度です。

    MOT 5.冷却原子

    注:MOTは、極低温原子の実験で広く使用されている冷却方法です。このセクションでは、約300μKで約10億6 Li原子のMOTを生成します。

    1. スロー原子源
      1. オーブンヒーターの電源をオンにします。
      2. オーブン温度が( 表2を参照)の動作領域に達した後、遅いゼーマン冷却ファンをオンにします。ゆっくりそれぞれ7 A 1 Aへの2つのクロスオーバーコイルの電流に遅くまで9.2 A.ターンの電流を増加させます。
        注意:表2に列挙されたオーブンの温度分布は、原子源12のコリメーション及び寿命のために最適化されています。オーブン上のヒータの位置は、 図4に示されています。
      3. 原子シャッターを開くことにより、手動でゼーマン遅いレーザビームのブロックを解除します。赤色離調2 2 S 1/2(F = 3/2)→2 2 P 3/2遷移に192メガヘルツにレーザ光の周波数を設定します。
        注:この設定で、原子の速度は100m / sの1400メートル/ sから減速しています。遅いゼーマンは、 図5に示されています。
    2. 磁場勾配
      注:この装置は、アンチヘルムホルツ又はヘルムホルツ磁場のいずれかを生成するHブリッジスイッチ回路によって制御される一対のコイルを使用します。コイルは、過熱を防ぐために、冷却水です。
      1. ゆっくりと6ガロン/分の水の流れをオンにします。
      2. MOTローディングタイミングファイルでタイミング制御プログラムを実行することにより、抗ヘルムホルツ磁場設定用のHブリッジを設定します。
      3. 磁石の電源をオンにし、そしてMOT約22 G / cmでの磁場勾配を作成その制御プログラムを介して、約18 Aに各コイルの電流を設定します。
        注:磁場勾配がオンされた後に静的MOTは、実験室で観察されます。
    3. ダイナミックMOT
      :6のLi MOTの光学セットアップは、互いに直交する全てのペアとMOTビームを伝播するカウンタの三対を含みます。各MOTビームは、冷却ビームと再ポンピングビームを含みます。 AOMによって制御されるビームの強度及び周波数離調は、3つの相の変化です。 AOMの制御電圧は、タイミング制御装置により指令マルチプレクサ回路を介して設定されています。三相のパラメータを、 表3に列挙されています。光学素人MOTビームのうち、図6に示されています。
      1. ロード、ソフトウェア制御とループのタイミング制御プログラムにおける実験タイミングファイルをコンパイルして実行します。実験タイミングは、MOTのローディングフェーズから始まります。 MOTに約10 9個の原子を示す2 Vに到達する光検出器でMOT蛍光シグナルを監視します。
        注:MOTの蛍光は、約10 -4ラジアンの空間角度でレンズによって集められます。ローディングフェーズ原子数は文献13の方法で計算することができます。
      2. ローディング段階が終了する前に減速ビームを遮断する光シャッタを使用します。
        注:減速ビームシャッターのタイミングは、表1に記載されている実験タイミングの制御下にあります。
      3. セット強度とMOTレーザ光の周波数離調冷却段階のために、表3に記載の方法。
        注:冷却段階の後、温度MOTは約300μKに減少しています。
      4. 圧送フェーズでは、プログラムファイルをタイミング実験はAOMで再ポンピング光をオフにします。
        注:ポンプ相が最小の超微細状態に全ての原子ポンプ2 2 S 1/2(F = 1/2)。
      5. MOTビームをオフにし、30 MHzのAOMによって原子遷移共鳴を下回るレーザ周波数をシフトし、光シャッター付きのAOMから漏れる光を遮断します。
        注:MOT段階の後、原子雲に共鳴光の漏れは、原子が失われます。 AOM制御及びMOTビームシャッターのタイミングは全て、表1に列挙されています。
      6. 動的MOT後、カメラからの撮像フレームを取得します。 MOTの吸収イメージングを取得します。
        注:MOTの原子数は約10 7ポンプフェーズの後です。 MOTの典型的な吸収画像は、 図7aに示されています。
    <Pクラス= "jove_title"> 6。 ODTで超低温フェルミガスの準備

    1. 光双極子トラップ
      注:ODTは、極低温フェルミガスを生成するための主要なツールです。深いODT、1064nmの波長で100 Wの発光パワーを有するファイバレーザを生成するために使用されます。 ODTの設定は、 図8に示されています。
      1. レーザービームダンプを冷却するための水の流れをオンにします。
      2. 手動1 VにODT AOM制御電圧を設定します。 13 Wの発光パワーを有するファイバレーザをオンにします。
      3. 赤外光ビューアでODT光学系を確認し、アルゴンガス流量との任意のほこりを取り除きます。
        注:光学上のダストは、ODTの空間プロファイルを変更し、ODTの不安定性を引き起こす可能性があります。
      4. AFG制御プログラムを介してレーザパルスを生成するファイバレーザAFGをコマンド。
        注:レーザパルスの出力は、実験タイミングによってトリガされ、このパルスの開始時間は、MOTのローディングフェーズの終了前に、14ミリ秒に設定されています。 PULSEシーケンス制御は、図1に示され、そしてタイミングを、 表1に記載されています。
      5. 手動8 V(飽和RF電力の80%)のODT AOM制御電圧を設定します。
        注:AOMドライバの最大RF電力は、熱レンズ効果を低減するために、飽和パワーの80%に制限されるべきです。
      6. カメラからのMOTとODTの吸収画像を取得します。
        注:それらの吸収イメージングを通じてMOTとODTの重複をチェックしてください。 図7bは、それぞれ、MOTおよびODTの典型的な吸収画像を示します。
    2. バイアス磁界とスピンミキシングRFフィールド
      注:相互作用フェルミガスを生成するために、垂直方向のバイアス磁界が曲S -wave散乱長に適用されます。
      1. 実験タイミングプログラムでHブリッジを設定するようにヘルムホルツ反ヘルムホルツからの磁界構成の変更。
        注:ヘルムホルツコイルは、原子間の相互作用を調整するためのバイアス磁界を発生させます。
      2. チャネル2と磁石制御プログラムのチャンネル3で527.3 G 330 Gにバイアス磁界を設定します。
      3. MOTがオフされた後、330 G 0 Gからの磁界を掃引する実験タイミングシーケンスをプログラムします。
        注:この磁場掃引は、標準の蒸発冷却のために弱い相互作用6李フェルミガスを準備します。
      4. 番組非干渉フェルミガス14のための527 G 330 Gからの磁場スイープ。
        注:6.2.1-6.2.4からの磁界のシーケンス。 図1に示され、そしてタイミングを、 表1に記載されています。
      5. 6 Li 最も低い2つの超微細状態の50:50混合物2 2 S 1/2(F = 1/2、M F =±1/2)を作成するために、ノイズの多いRFパルスを適用します。
      6. 原子と共振チューンロックレーザ周波数527.3 G RF信号の出力周波数を変化させることによって(遷移2 2 S 1/2(F = 1/2、M F = -1/2)低磁場で→2 2 P 3/2に相当)ジェネレータ。
        注:共振周波数は、周波数調整を案内するために使用される吸収イメージングの原子の数を最大にします。 50:50スピン混合物を実験のために使用されるためだけスピンダウン原子は、原子雲を提供するように結像されます。
    3. 下げるトラップによって蒸発冷却
      注:標準の蒸発冷却が縮退政権の近くに6 Liがフェルミ原子を冷却するために使用されます。蒸発冷却の第一段階は、ファイバレーザのパルスによって制御され、第二はODT AOMによって制御されます。近縮退フェルミガスは、パラメトリック冷却のためのサンプルとして使用されます。
      1. 蒸発冷却ウィットの第一段階を開始します時間戻し0.1 U 0、U 0にODTのトラップ深さを増加させるファイバレーザパワーをパルスすることによって制御ソフトウェア(U 0は、100 Wのレーザパワーとの完全なトラップ深さです)。この段階の合計時間は0.5秒です。
        :U 0に対応するパルス持続時間は、熱レンズ効果を避けるために、0.5秒に限定されるべきです。
      2. プログラム、図1に示すように、指数関数曲線とODT AOM。蒸発冷却の第一段階が終了した後、30秒待ってからODTのAOMを介してU 0 0.01 U 0 0.1からトラップ深さを低くすることによって蒸発冷却の第二段階を開始します。この段階の合計時間は1.5秒です。
      3. 蒸発冷却後、冷原子の吸収画像を取得します。
        注:約10 5個の原子が蒸発冷却後ODTに残っている、から計算することができます吸収画像。

    7.パラメトリック冷却

    1. トラップの深さのモジュレーション
      1. δは、変調深さおよびωは0.01 U 0(1 cos(ωmをT m ))= U(T m )によってODT AOMとトラップ深527.3 G.変調する磁気掃引後100ミリ秒待ちますmは変調周波数です。パラメトリック変調AFG制御プログラムで変調時間t mを設定します。変調の時系列を図1に示されています。
        注:これは、パラメトリックな冷却を実現するための重要なステップです。
      2. 突然トラッピングビームをオフにすることで、ODTからの原子を解放するためのプログラムAPG。ガスは弾道吸収イメージングを適用する前に、300μsの拡大してみましょう。
        注:弾道展開はテンペを取得するために、TOF吸収イメージングで使用されています冷たい原子のrature。
      3. パラメトリック冷却した後、冷原子の吸収画像を取得します。
    2. 時間依存性の測定
      注:我々の以前の仕事7において、我々は、パラメトリック冷却の最適化された周波数をωxが 0.01 U 0でODTのラジアルトラップ周波数で1.45ωX、でした。この周波数を使用して、我々は、選択軸方向に沿って高エネルギーの原子を除去することができます。
      1. パラメトリック変調AFG制御プログラムを介し= 0.5δする変調の深さを設定します。
      2. 変調サイクル数を変えることにより、0から600ミリ秒の変調時間を変更するパラメトリック変調AFGの外部トリガ制御機能を使用します。
        注:変調時間の増加とともに、原子雲の大きさは、特に軸方向に削減されます。関連する結果は図9に示されています。 カメラからの撮像フレームを取得します。 CCD制御プログラムを介して画像を保存し、分析します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

このプロトコルを使用して、我々は、我々の以前の出版物7で決定されているどちらも、最適化された変調周波数及び振幅で変調時間に対するパラメトリック冷却の依存性を調べます。まずT / T F≈1.2の温度で2つの最低超微細状態の6個の Li原子の非干渉フェルミガスを準備します。ここで、T F =(6N)1/3ħω/ K B = 5.2μKは原子数N =スピンあたり1.7×10 5及び幾何平均トラップ周波数ω=(ωXωy ωz)を 1と判定されました/ 3 =2π×(2250×2450×220)1/3ヘルツで、h減少プランク定数であり、k Bはボルツマン定数です。タイム依存性の結果は、1.45ωXの変調周波数、及び0.5の変調深さと図9に示されています。原子雲( 図9a)のTOF吸収画像は連続的パラメトリック冷却によって低減される絶対温度を表す、変調時間の増加に伴って軸方向雲のサイズの有意な減少を示します。

定量的に冷却効果を説明するために、我々は、Eを使用する(X、Z)/ E F E Fは、フェルミエネルギーとE(X、Z)は極低温フェルミガス7に有効検温として半径の原子雲エネルギーでありますそれぞれと軸方向。私たちは、まず、原子雲から数の独立した二乗平均サイズ(NIMS)を抽出します。次いで、NIMSから、我々は、 図9(X、Z)/ E F Eを算出しますB。約500ミリ秒の変調後、EのZ / E Fは、1.80から0.90まで大幅に低減され、E、X / E Fはわずかに1.25に1.20からわずかに増加します。 図9bの挿入図に減少原子番号、原子がトラップから放出される示します。パラメトリック冷却ラジアル一つはフェルミエネルギーの上方にある間に、軸方向にエネルギーがフェルミエネルギーより下である、異方性の方法で、原子雲のエネルギーを変化させることを我々見つけます。軸方向および半径方向( 図9b)における初期等しくないエネルギーはセクション6.3で適用低下高速トラップによって生成されることに留意されたいです。半径方向のエネルギーをほとんど変化させながらパラメトリック冷却した後、軸方向のエネルギーが大幅に低減されます。この結果は、パラメトリック冷却エネルギーが異方性であるクラウドを変更する方法を示します。この異方性効果は、その事実のためであります交差ビームODTの支配的な非調和性は、軸方向7に沿っています。そのような熱力学的異方性サンプルは相互作用多体量子系に熱化プロセスを研究するために使用することができます。

図1
図1:超高真空システム。 IUPUIに冷却原子気体装置の真空チャンバ。 1.オーブン、2ゼーマン遅く、3マグネットコイル、4実験室および5のCCDカメラ。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図2
図2:パラメトリック冷却用のタイミングシーケンス。黒色の曲線はファイバレーザパワータイミングです。赤い曲線は、一つOでF ODT AOMタイミング。シアン曲線は、磁界を表します。オレンジ色の曲線は、TOFイメージングパルスです。横軸は、各ステージのタイムスケールを示しています。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図3
3:6 Li及びレーザ周波数ロックスペクトルの原子レベル。 A)MOTの冷却および再ポンピングビーム6のLi D 2遷移。 B)黄色の曲線は、6のLi D 2線のドップラーフリー飽和吸収スペクトルであり、赤色の曲線は、関連するロックインエラー信号です。左のピークは2 2 P 3/2遷移→2 2 S 1/2(F = 3/2)であり、右が2であります2 2 P 3/2遷移、及び中央の1→2 S 1/2(F = 1/2)は、2つの遷移の交差信号です。ダッシュクロスは、ロックポイントです。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図4
4:6 のLiオーブン。各標識部が出力するオーブンに必要な原子フラックスのための温度制御された加熱コイルを含んでいます。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図5
Figu 5再:ゼーマン遅くなります。クロスオーバーコイルが遅くゼーマンの最後のセクションです。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図6
図6:MOT光学配置。 MOTの生成および減速レーザビームのための光学装置。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図7
図7:MOTとODT吸収画像。相をポンピングした後a)の MOTの画像。 B)重複MOTとODTの画像。_upload / 55409 / 55409fig7large.jpg」ターゲット= 『_空白』>この図の拡大版をご覧になるにはこちらをクリックしてください。

図8
図8:クロスビームODT光学配置。 ODTの交差角は= 12°2θです。ファイバレーザAFGはレーザのパルス化を制御し、ODT AFGトラップ低下曲線を制御し、パラメトリック変調AFGは、レーザ強度変調を制御します。両方のビームのビームウェストは約37ミクロンです。第一のビームの偏光は垂直であり、第二のビームの偏光は水平です。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図9
図9:時間パラメトリック冷却の依存性測定。 A)種々の変調時間の原子雲の吸収画像。 E(X、Z)B)依存性/変調時間にE F(青丸はE、Z / E Fのためのものであり、赤い四角はE X / E F)のためのものです。差し込み図は、変調時間に対する原子数です。エラーバーは1つの標準偏差を表します。 この図の拡大版をご覧になるにはこちらをクリックしてください。

MOTの負荷に出発地点
MOTのローディング時間 10秒
MOTは、上の冷却します MOTのロードオフ
MOTの冷却時間 5ミリ秒
上のポンプMOT MOTはクーリングオフ
MOTポンピング時間 100マイクロ秒
オフMOT AOM MOTオフ(OFFポンプMOTと同じ)
上のゼーマン遅くビームシャッターオフMOTローディング前に200ミリ秒
上のMOTビームシャッターオフMOT
開始時刻を冷却ファイバーレーザー蒸発 MOTローディングの終了前14秒
ODT開始時刻を蒸発冷却 MOTのオフの後に500ミリ
Hブリッジスイッチ時間オフMOT
磁場掃引開始時間(0から330 G) オフMOT
磁場掃引開始時間(330から527.3Gへ) MOTのオフ後の2000ミリ秒
パラメトリック冷却開始時間 MOTのオフ後の2500ミリ秒
イメージングパルストリガ時間 MOTのオフ後の3200ミリ秒
CCDトリガ時間撮像パルストリガ時間前に100マイクロ秒

表1:実験タイミング制御。実験的な計測器を制御するためのシーケンスパラメータをタイミング。タイミングシーケンスは、MOT負荷、冷却及びポンプから始まります。 MOTオフはMOTポンプ後の時点です。

チャネル1 チャンネル2 チャンネル3 チャンネル4 チャンネル5
348°C 354°C 434°C 399°C 372°C

表2: オベn個の温度プロファイル。 6リーオーブンは、列挙された温度との最適なフラックスで動作します。

段階ローディング冷却揚水
ビーム冷却再ポンピング冷却再ポンピング冷却再ポンピング
ロック遷移(メガヘルツ)から離調 -28 -28 -5 -5 -2 オフ
強度(私が座っていました 2 1 0.1 0.05 0.08 オフ

3:MOT フェーズのプロパティ。 MOTの相系列は番目を最大化するように設計されてODTに転送する原子の電子の数。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

我々は、クロスビーム光学トラップにおける非干渉フェルミガスのパラメトリック冷却のための実験プロトコルを提示します。このプロトコルの重要なステップは、まず、光学的にトラップされたフェルミガスは、トラップ深さを低下させることにより近い縮退温度まで冷却する必要があります。第二に、変調周波数はトラッピングポテンシャルの非調和成分と共振することに選択されます。第三に、トラップビームの強度は、原子雲を冷却し、変調時に雲エネルギーの依存性を測定するために変調されます。

トラップ低下方式に比べ、パラメトリック冷却方式は、トラップ深さを低下させることなく、光トラップからの高エネルギーの原子を除去する選択的な方法を提供します。これは、相密度を高め、非干渉フェルミガスを冷却するのに役立ちます。そのようなパラメトリック冷却は通常異方性であるので、それはまた、量子ガスの温度異方性を変更するための便利な方法を提供しますエス。

パラメトリック冷却を可能にするために、現在のプロトコルは、出発点として縮重温度に近いフェルミガスを必要とします。冷却効果はまた、トラッピングポテンシャルの軸方向に制限されています。これら2つの制限は、現在のプロトコルでは、ガウスレーザビームによって行われるクロスビームODTの有限の非調和性によって引き起こされます。異なる原子種のために、この方法を拡張し、広い温度範囲のためにそれを適用するために、我々は、トラップポテンシャルの非調和性を向上する必要があります。

私たちは、この冷却技術のための2つの改良を提案します。まず、パラメトリック冷却は、ボックストラップ15又は直接せずに縮退レジームに熱状態から捕捉された原子を冷却する可能性を有するべき乗則トラップ16として、3つのすべての方向に大きな非調和性のあるトラップ電位を実現することができますで光トラップを低下させる必要すべて。第二に、定期的AOM 17を介して光トラッピング電位を振盪することによって、我々はフロケ法18を用いて、大きな非調和性を有する光トラップを合成することができます。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
500 mW 671 nm ECDL Toptica TA Pro Quantity: 1
35 mW 671 nm ECDL Toptica DL-100 Quantity: 1
671 nm AOM Isomet 1206C Quantity: 3
671 nm AOM Driver Isomet 630C-110 Quantity: 3
100 W 1,064 nm CW laser IPG photonics YLR-100-1064-LP Quantity: 1
1,064 nm AOM IntraAction ATM-804DA6B  Quantity: 1
1,064 nm AOM Driver IntraAction ME-805EH  Quantity: 1
Arbitrary Function Generator Agilent  33120A Quantity: 3
Digital I/O Board United Electronic Industries PD2-DIO-128 Quantity: 1
System Design Platform National Instruments LabVIEW Quantity: 1
Analog Voltage Output Device Measurement Computing USB-3104 Quantity: 1
CCD Camera Hamamatsu Orca R2 Quantity: 1
Arbitrary Pulse Generator Quantum Composer 9618+ Quantity: 1
Analog Voltage Output Device Measurement Computing USB-3104 Quantity: 1
20 A power supply Quantity: 1
10 A power supply Quantity: 1
120 A power supply Quantity: 2
Cooling Fans Quantity: depends on apparatus design
671 nm Mirrors Quantity: depends on apparatus design
671 nm Half-wave Plate Quantity: depends on apparatus design
671 nm Quarter-wave Plate Quantity: depends on apparatus design
500 mW Beam Shutter Quantity: depends on apparatus design
671 nm Lenses Quantity: depends on apparatus design
Faraday Isolator Quantity: 2, one for each ECDL
671 nm Polarizing Beam Splitter Quantity: depends on apparatus design
Photodetector Thorlabs SM05PD1A Quantity: 1
Multiplexer  Analog Devices ADG409 Quantity: 1
Multiplexer  Analog Devices ADG408 Quantity: 2
1,064 nm plano-concave lens Quantity: 1 for beam reducer
1,064 nm plano-convex lens Quantity: 1 for beam reducer
1,064 nm Mirrors Quantity: depends on apparatus design
1,064 nm Half-wave Plates Quantity: depends on apparatus design
1,064 nm Lenses Quantity: depends on apparatus design
1,064 nm Thin Film Polarizer Quantity: 1
100 W, 1,064 nm Beam Dump Quantity: 1
100 W, 1,064 nm Power Meter Quantity: 1
RF Function Generator Rigol DG4162 Quantity: 1
RF Power Amplifier Mini-Circuits ZHL-100W-GAN+ Quantity: 1

DOWNLOAD MATERIALS LIST

References

  1. Petrich, W., Anderson, M. H., Ensher, J. R., Cornell, E. A. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 74 (17), 3352 (1995).
  2. Ketterle, W., Druten, N. J. V. Evaporative cooling of trapped atoms. Advances in Atomic, Molecular, and Optical Physics. Bederson, B., Walther, H., et al. 37, Academic Press 181-236 (2003).
  3. Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B., Hulet, R. G. Observation of Fermi pressure in a gas of trapped atoms. Science. 291 (5513), 2570-2572 (2001).
  4. DeMarco, B., Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science. 285 (5434), 1703-1706 (1999).
  5. Granade, S. R., Gehm, M. E., O'Hara, K. M., Thomas, J. E. All-optical production of a degenerate Fermi gas. Phys. Rev. Lett. 88 (12), 120405 (2002).
  6. Luo, L., et al. Evaporative cooling of unitary Fermi gas mixtures in optical traps. New J. Phys. 8 (9), 213 (2006).
  7. Li, J., Liu, J., Xu, W., de Melo, L., Luo, L. Parametric cooling of a degenerate Fermi gas in an optical trap. Phys. Rev. A. 93 (4), 041401 (2016).
  8. Poli, N., Brecha, R. J., Roati, G., Modugno, G. Cooling atoms in an optical trap by selective parametric excitation. Phys. Rev. A. 65 (2), 021401 (2002).
  9. Kumakura, M., Shirahata, Y., Takasu, Y., Takahashi, Y., Yabuzaki, T. Shaking-induced cooling of cold atoms in a magnetic trap. Phys. Rev. A. 68 (2), 021401 (2003).
  10. Li, J., et al. Sub-megahertz frequency stabilization of a diode laser by digital laser current modulation. Appl. Opt. 54 (13), 3913-3917 (2015).
  11. Hamamatsu Photonics Deutschland GmbH. HiPic user manual. , (2016).
  12. Luo, L. Entropy and superfluid critical parameters of a strongly interacting Fermi gas [Ph.D. thesis]. , Duke University. (2008).
  13. Ries, M. A magneto-optical trap for the preparation of a three-component Fermi gas in an optical lattice [Diploma thesis]. , University of Heidelberg. (2010).
  14. Bartenstein, M., et al. Precise determination of 6Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett. 94 (10), 103201 (2005).
  15. Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., Hadzibabic, Z. Bose-Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110 (20), 200406 (2013).
  16. Bruce, G. D., Bromley, S. L., Smirne, G., Torralbo-Campo, L., Cassettari, D. Holographic power-law traps for the efficient production of Bose-Einstein condensates. Phys. Rev. A. 84 (5), 053410 (2011).
  17. Roy, R., Green, A., Bowler, R., Gupta, S. Rapid cooling to quantum degeneracy in dynamically shaped atom traps. Phys. Rev. A. 93 (4), 043403 (2016).
  18. Bukov, M., D'Alessio, L., Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64 (2), 139-226 (2015).

Tags

エンジニアリング、問題121、レーザー冷却、レーザートラッピング、超低温原子、光双極子トラップ、パラメトリック冷却、縮退フェルミガス
定期駆動することによって光学的に閉じ込められた超低温フェルミガスを冷却
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Li, J., de Melo, L. F., Luo, L.More

Li, J., de Melo, L. F., Luo, L. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving. J. Vis. Exp. (121), e55409, doi:10.3791/55409 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter