This article presents a small-scale plasma membrane isolation protocol for the characterization of Candida albicans ABC (ATP-binding cassette) protein Cdr1, overexpressed in Saccharomyces cerevisiae. A protease-cleavable C-terminal mGFPHis double tag with a 16-residue linker between Cdr1 and the tag was designed to facilitate the purification and detergent-screening of Cdr1.
The successful biochemical and biophysical characterization of ABC transporters depends heavily on the choice of the heterologous expression system. Over the past two decades, we have developed a yeast membrane protein expression platform that has been used to study many important fungal membrane proteins. The expression host Saccharomyces cerevisiae ADΔΔ is deleted in seven major endogenous ABC transporters and it contains the transcription factor Pdr1-3 with a gain-of-function mutation that enables the constitutive overexpression of heterologous membrane protein genes stably integrated as single copies at the genomic PDR5 locus. The creation of versatile plasmid vectors and the optimization of one-step cloning strategies enables the rapid and accurate cloning, mutagenesis, and expression of heterologous ABC transporters. Here, we describe the development and use of a novel protease-cleavable mGFPHis double tag (i.e., the monomeric yeast enhanced green fluorescent protein yEGFP3 fused to a six-histidine affinity purification tag) that was designed to avoid possible interference of the tag with the protein of interest and to increase the binding efficiency of the His tag to nickel-affinity resins. The fusion of mGFPHis to the membrane protein ORF (open reading frame) enables easy quantification of the protein by inspection of polyacrylamide gels and detection of degradation products retaining the mGFPHis tag. We demonstrate how this feature facilitates detergent screening for membrane protein solubilization. A protocol for the efficient, fast, and reliable isolation of the small-scale plasma membrane preparations of the C-terminally tagged Candida albicans multidrug efflux transporter Cdr1 overexpressed in S. cerevisiae ADΔΔ, is presented. This small-scale plasma membrane isolation protocol generates high-quality plasma membranes within a single working day. The plasma membrane preparations can be used to determine the enzyme activities of Cdr1 and Cdr1 mutant variants.
The extraction of integral membrane proteins from their native lipid environment can dramatically affect their structure and function1,2,3,4. The complex lipid composition of biological membranes5 ensures that critically important protein-lipid interactions can occur6. Lipids maintain the structural integrity of membrane proteins, thus enabling them to function correctly in their membrane compartment destination(s)7,8. Therefore, a critical first step in the membrane protein purification is the extraction of the protein from its native environment without affecting its structure and/or function.
There are many obstacles to characterizing the structure of membrane proteins, most of which are related to their hydrophobic nature, and the difficulties of expressing properly folded and functional membrane proteins in the quantities required for X-ray crystallography or cryo-electron microscopy (cryo-EM)9,10,11,12. There are three types of membrane protein expression systems: homologous9, heterologous13,14,15, and in vitro expression systems16,17. The often-low expression levels, or the prohibitive costs, of many expression systems leave only a few hosts as the preferred option to produce membrane proteins. They include the bacterial host, Escherichia coli, the yeasts S. cerevisiae and Pichia pastoris, and higher eukaryotes such as Sf9 insect cells or mammalian cell lines18. All membrane protein expression technologies have advantages and disadvantages; however, S. cerevisiae is perhaps the best studied eukaryotic model organism suitable for membrane protein production. It is highly versatile with applications in genetic engineering, drug discovery, synthetic biology, and the expression of eukaryotic membrane proteins14,19,20,21.
In this study, a patented S. cerevisiae membrane protein expression technology21 was used, with S. cerevisiae ADΔ14 and ADΔΔ22 as the preferred hosts (Figure 1A), to overexpress and study the major C. albicans multidrug efflux pump Cdr1. Both the S. cerevisiae strains are derivatives of AD1-8u– 23 that have either the ura3 (ADΔ) or both the ura3 and his1 (ADΔΔ) genes deleted to eliminate any false positive uracil or histidine prototroph transformants arising through the unwanted integration at the URA3 or the HIS1 genomic loci. The deletion of the 7 major multidrug efflux pumps23, indicated in Figure 1A, makes ADΔΔ exquisitely sensitive to most xenobiotics. The gain-of-function mutant transcription factor Pdr1-3 causes the constitutive overexpression of heterologous membrane proteins such as Cdr1 (red octagons in Figure 1A) after integration of the heterologous-ORF-containing transformation cassette (Figure 1A) at the genomic PDR5 locus (blue rectangle in Figure 1A) via two homologous recombination events. Proper plasma membrane localization of C-terminally mGFPHis tagged proteins can be confirmed by confocal microscopy (Figure 1A), and the His tag can be used for nickel-affinity purification of the tagged protein. Cloning some fungal ABC transporters (e.g., Candida krusei ABC1) into pABC3-derived plasmids was, however, not possible because they could not be propagated in Escherichia coli due to cell toxicity. This prompted the development of the one-step cloning of membrane proteins14,24 tagged at either their N- or C-terminus with various affinity, epitope, or reporter tags directly into S. cerevisiae ADΔΔ (Figure 1C). S. cerevisiae ADΔΔ strains overexpressing various CDR1 mutants can also be created efficiently this way by using up to five individual PCR fragments that overlap by 25 bp (Figure 1C). Employing this protocol, many ORFs of interest can be cloned, expressed, and characterized at low cost and at high efficiency within a very short time span. The transformation efficiency reduces only ~2-fold with each additional PCR fragment.
If desired, expression levels can also be readily manipulated by primer design to predictably tune expression levels down to anywhere between 0.1%-50% of the usually high, constitutive expression levels25. The optimized, multifunctional, pABC314 derivative cloning vector, pABC3-XLmGFPHis26 (Figure 1B) contains a HRV-3C protease cleavage site (X; LEVLFQ|GP), a protease that performs better at 4 °C than the frequently used tobacco etch virus (TEV) protease27. L is a five amino acid (GSGGS) linker, mGFP is a monomeric mutant (A206K)28,29 version of the yeast enhanced green-fluorescence protein variant yEGFP330, and His is a three amino acid linker (GGS) followed by the six-histidine (HHHHHH) nickel-affinity protein purification tag.
This expression technology has been successfully used in drug discovery and the study of membrane proteins. The first structure for a fungal azole drug target, S. cerevisiae Erg1131, was solved using this technology. It also enabled the detailed characterization of C. albicans Cdr132,33,34 and the creation of a cysteine-deficient Cdr1 molecule35 suitable for cysteine-crosslinking studies to verify any future high-resolution structure. Many other ABC transporters from major human fungal pathogens (i.e., C. albicans, Candida glabrata, Candida auris, Candida krusei, Candida utilis, Cryptococcus neoformans, Aspergillus fumigatus, Penicillium marneffei, and the Fusarium solani species complex) have also been studied in detail using this expression platform24,36,37,38,39. This has enabled the generation of a panel of S. cerevisiae strains overexpressing efflux pumps that has been used in high-throughput screens to discover the novel fluorescent efflux pump substrate Nile red40 and specific41 and broad-spectrum14,33,42,43,44 efflux pump inhibitors. The use of this system also enabled the discovery of clorgyline as the first of its kind broad-spectrum fungal multidrug efflux pump inhibitor42.
Complete solubilization of membrane proteins and the creation of a homogeneous membrane protein-micelle preparation devoid of endogenous lipids, requires high detergent concentrations45. But unfortunately, this also often inactivates the membrane protein5,8,45,46. The properties of detergent monomers and their aggregation in solution are affected by the physical properties of the hydrophobic tail, the length and branching of the alkyl chain, the presence of an aromatic nucleus or fluoroalkyl side chain, or the number of polyoxyethylene units. Thus, detergent screening is an important first step to determine the most suitable detergent for membrane protein solubilization and purification.
C. albicans is a major human fungal pathogen of immunocompromised individuals that can cause serious, life threatening invasive infections47, and it can become resistant to azole antifungal drugs48,49. One of the main mechanisms of C. albicans multidrug resistance is the overexpression of Cdr150, which is a type II ATP-binding cassette (ABC) transporter51 of the ABCG subfamily located in the plasma membrane. Full-size fungal ABCG transporters (consisting of two nucleotide binding domains [NBDs] and two transmembrane domains [TMDs]) are more commonly known as pleiotropic drug resistance (PDR) transporters and are characterized by their unique inverted domain topology [NBD-TMD]2. PDR transporters are only found in plants52,53 and fungi54. Despite their importance, there are no structures for PDR transporters, although structures for human half-size ABCG transporters have recently been solved which helped create the first tentative model for Cdr133. Our recent experimental evidence suggests, however, that this model is flawed possibly because fungal PDR transporters have characteristic asymmetric NBDs resulting quite possibly in a unique transport mechanism. A high-resolution structure of Cdr1 is, therefore, required for both the rational design of novel efflux pump inhibitors that may help overcome efflux-mediated drug resistance, and to provide insights into the mechanism of action of this important ABC transporter family.
The objective of this study was to develop reliable protocols for the expression, solubilization, and purification of Cdr1 in the genetically modified S. cerevisiae expression host, with the ultimate aim of obtaining a high-resolution structure for Cdr1. As part of this process, a protease-cleavable mGFPHis double tag (Figure 1B) was designed with a 16-residue linker separating the tag from the C-terminus of Cdr1, which improved binding of the attached 6x His affinity tag to the nickel-affinity resin and enabled the monitoring of Cdr1 expression levels in living cells and during the entire purification process. A reproducible protocol for small-scale yeast plasma membrane protein preparations containing about 10% C. albicans Cdr1 (as estimated by Coomassie staining after SDS-PAGE) was also developed, which could be used for the biochemical characterization of Cdr1.
1. Preparation of fresh or frozen stocks of transformation competent ADΔ and ADΔΔ cells
2. Transformation of ADΔ and ADΔΔ with CaCDR1-XLmGFPHis and confirmation of correct transformants by colony PCR and DNA sequencing
NOTE: Plasmid pABC3-CDR1-mGFPHis was created using conventional cloning strategies described in detail in Lamping et al., 201055 and is illustrated in Figure 1B. Wild-type C. albicans CDR1 was isolated as a PacI/NotI fragment from plasmid pABC3-CaCDR1A-GFP14 and cloned into pABC3-XLmGFPHis26.
3. Small-scale yeast plasma membrane isolation protocol
4. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
5. Determination of Cdr1 ATPase Activities 57
6. Small scale detergent screen
A high frequency of transformation of S. cerevisiae ADΔΔ (~4 x 104 transformants/µg) was achieved with pYES2 (Figure 2B). As expected, the no DNA (i.e., ddH2O only) control gave no transformants, and 1 µg of the linear CDR1–mGFPHis transformation cassette (Figure 1A) gave ~50 transformants (Figure 2C) with the optimized ADΔΔ transformation protocol. The CDR1–mGFPHis transformants were also tested for their ability to grow on a non-fermentable carbon source to eliminate any possible petite mutants with defective mitochondria. Three (yellow circles; Figure 2D) of the 25 uracil-prototroph transformants tested could not grow on YPG agar plates and were discarded from further investigations. The Cdr1-mGFPHis expressed by the newly created strain ADΔΔ-CDR1-mGFPHis is properly localized in the plasma membrane (Figure 1A) and was expressed at sufficient levels for the structural and functional characterization of Cdr1 (Figure 3). The design of the optimized double tag (Figure 1B) also enables the removal of the mGFPHis double tag following Nickel-affinity purification of Cdr1-mGFPHis to prevent possible interference from the tag in downstream applications. Preliminary results, however, have shown that the 3 amino acid linker between Cdr1 and the HRV-3C protease cleavage site may have to be extended to achieve faster, more effective, cleavage. Similar observations were recently reported for the N-terminally tagged nucleoside transporter Escherichia coli NupC, which required a 15 rather than the originally designed 3 amino acid linker for efficient cleavage of the detergent (DDM) solubilized NupC bound to the Nickel-affinity resin59. The 5 amino acid linker C-terminal of the HRV-3C cleavage site prevents steric interference of the mGFPHis double tag with the attached protein of interest, which we have previously observed for C. utilis ABC transporter Cdr139. The yEGFP3-A206K mutation was created to prevent artificial GFP-dimerization at high protein concentrations28, and the additional 3 amino acid linker between mGFP and the His Nickel-affinity tag ensures proper surface exposure of the His tag to maximize the binding efficiency of the tagged protein to the nickel affinity resin (data not shown).
Figure 1: A yeast membrane protein expression platform for the efficient cloning and expression of fungal plasma membrane transporters. (A) A transformation cassette comprising the PDR5 promoter (blue), CDR1 (red) C-terminally tagged with XLmGFPHis (green), the PGK1 terminator (orange), the URA3 selection marker (light blue), and a piece of the PDR5 downstream region (blue) is used to transform the expression host S. cerevisiae ADΔΔ by integration at the genomic PDR5 locus. The gain-of-function mutant transcription factor Pdr1-3 causes the constitutive overexpression of Cdr1 (red octagons) in the plasma membrane (see confocal microscopy image underneath). (B) Plasmid pABC3-XLmGFPHis, which can be used in a traditional cloning strategy or as a PCR template to generate a transformation cassette. Improvements of plasmid pABC3-XLmGFPHis over pABC3-GFP14 are listed underneath the plasmid map. (C) An alternative more efficient one-step cloning strategy to integrate the transformation cassette at the genomic PDR5 locus of ADΔΔ. An ORF (red) can be PCR amplified using primers (arrows) that create overlaps with the left arm (blue; PDR5 promoter) and right arm (green; XLmGFPHis–PGK1–URA3–PDR5 downstream) fragments. Mutations (black lines) can be introduced into the ORF by primer design if needed. Homologous recombination events that direct the correct integration at the PDR5 locus are indicated by the crossed dashed lines. (D) Whole cell assays that can be used for the functional characterization of fungal multidrug efflux pumps. Please click here to view a larger version of this figure.
Figure 2: Transformation of ADΔΔ with the CDR1–mGFPHis transformation cassette and elimination of petite ADΔΔ-CDR1-mGFPHis transformants. Uracil prototroph transformants were selected by incubating transformed ADΔΔ cells on CSM-URA plates at 30 °C for 3 days. (A) Negative control (no DNA). (B) Positive control (10 ng of pYES2). (C) CDR1–mGFPHis transformants (1 µg of DNA). (D) Testing ADΔΔ-CDR1-mGFPHis transformants for a petite phenotype on YPG agar plates. Petite transformants that could not grow on YPG agar plates due to defective mitochondria are encircled in yellow. Please click here to view a larger version of this figure.
The GFP fluorescence is a reliable measure for Cdr1 expression levels as there was a linear relationship between the amount of Cdr1-mGFPHis (step 3.3.9) and in-gel fluorescence signals (Figure 3A). In this project, a reproducible optimized workflow was developed for the rapid generation of high-quality small-scale plasma membrane preparations for the biochemical characterization of plasma membrane proteins. It was possible to generate almost 0.5 mg plasma membrane protein (Figure 3C; left graph) showing the highest Cdr1 ATPase activity (˜400 nmol/min/mg; Figure 3C; right graph) when breaking 40 ODU of logarithmic phase (OD600nm of 1-3) cells (resuspended in 0.5 mL of HB) with the same volume (i.e., 0.5 mL) of silica beads and 6 cycles of vortexing for 1 min at maximum shaking intensity followed by 3 min cooling periods on ice. Further increase in the number of breakage cycles (step 3.3.3) reduced the quality of the isolated plasma membrane preparation (the Cdr1 ATPase activity dropped from 170 nmol/min/mg to ~60 nmol/min/mg; data not shown). Although there were only minor differences in the SDS-PAGE protein patterns of the plasma membrane samples isolated from cells broken with higher numbers of breakage cycles (data not shown), it is likely that the almost 3-fold reduced Cdr1 ATPase activities after 10 or more breakage cycles was caused by either: i) partial denaturation of Cdr1 due to exposure to elevated temperature; ii) post-translational modifications such as phosphorylation or dephosphorylation; or by iii) increased cross-contamination of the isolated plasma membrane vesicles with membrane fractions of other organelles. Breaking 40 ODU of cells in 0.5 mL of HB yielded the highest quality of plasma membranes (i.e., the most Cdr1 per 10 µg of plasma membrane protein; Figure 3B) with highest Cdr1 ATPase activity (Figure 3C; right graph). Higher (> 40 ODU/0.5 mL of HB) or lower (20 ODU/0.5 mL of HB) cell densities reduced the ATPase activity of the isolated plasma membranes (Figure 3C; right graph), although, their yield increased in proportion to increasing cell densities (Figure 3C; left graph). Thus, 40 ODU/0.5 mL of HB was the optimum cell density for the isolation of the highest quality of plasma membranes. So, using the optimized protocol for the small-scale isolation of plasma membrane preparations led to 2-3 times higher Cdr1 specific ATPase activities (~300 nmol/min/mg; Figure 3C; right graph) compared to the Cdr1 specific ATPase activities that were initially obtained (~100 nmol/min/mg; data not shown). These ATPase activities were also significantly higher35 than any previously reported Cdr1 ATPase activities (100-200 nmol/min/mg) that had been obtained with a more labor-intensive and time-consuming large-scale plasma membrane preparation protocol14,41,60.
The most common method to extract membrane proteins from biological membranes is solubilization with detergent. The challenge, however, is to find a suitable detergent that has the least detrimental effect on protein stability and/or folding characteristics. Labeling the protein with mGFPHis facilitates screening to select the best detergent(s) for protein extraction. In total, 31 detergents, listed in the Table of Materials, with various properties were tested for their ability to solubilize Cdr1 from crude plasma membranes of S. cerevisiae ADΔΔ-CDR1-mGFPHis cells. The results for a representative set of 16 test detergents (A-Q) are shown in Figure 3D. Lanes T, P, and S contain 10 µL aliquots of total (T) plasma membrane protein immediately after detergent solubilization (step 6.2) and the detergent insoluble pellet (P; solubilized o/n in 0.5 mL of GTED-20, 2% SDS; step 6.5) and the detergent soluble supernatant (S; step 6.4) fractions after separation by ultracentrifugation at 141,000 x g. The desired detergent should solubilize as much Cdr1-mGFPHis as possible without altering its structure and/or function. The crude plasma membrane proteins (5 mg/mL) were solubilized for 2 h with 1% (w/v) detergent (T) and aliquots of the soluble (S) and insoluble (P) fractions were analyzed by SDS-PAGE (Figure 3D) and later also by fluorescence-detection size-exclusion chromatography (FSEC)58 (Figure 4). We determined that a minimum detergent to protein ratio of 2:1 (w/w) was required for efficient solubilization of Cdr1. In fact, to determine the optimum detergent (DDM) concentration required for the solubilization of Cdr1-mGFPHis, the critical micelle concentration of the detergent (x CMC) and the detergent/membrane protein ratio (w/w) were investigated. Large differences in the solubilization efficiencies of Cdr1-mGFPHis were observed when using fixed concentrations of 10x or 80x CMC of DDM. The solubilization efficiencies varied between 40% and 80% or 60% and 90% depending on the amounts of crude plasma membranes used in the various solubilization experiments. However, choosing detergent to protein ratios of ≥2 (w/w) gave reproducibly good results with >85% of Cdr1-mGFPHis being solubilized, no matter the amount of plasma membrane protein used. So, if using the more common approach of simply choosing 1% or 2% (w/v) detergent for the solubilization of membrane proteins such as Cdr1-mGFPHis, keeping the detergent to protein ratio above 2 (w/w) is important [i.e., keep the plasma membrane protein concentration below 5 mg/mL when using 1% (i.e., 10 mg/mL) detergent].
Figure 3: Quantification of Cdr1-mGFPHis expression levels, optimization of a small-scale plasma membrane isolation protocol and detergent screen for Cdr1-mGFPHis. (A) Quantification of Cdr1-mGFPHis with in-gel fluorescence; the Coomassie stained and in-gel fluorescence SDS-PAGE images of the same 0.7% polyacrylamide gel are shown on the left. Lanes 1 to 6 were loaded with 0.75, 1.5, 3, 6, 12, and 24 µg of ADΔΔ-CDR1-mGFPHis plasma membrane protein. Cdr1-mGFPHis is indicated with a red arrow. M = Precision Plus Protein Marker. The mGFP fluorescence intensities (shown on the right) were linear over the entire concentration range tested and there was minimal background fluorescence. (B) Effect of cell density at breakage on the quality of isolated plasma membranes. Coomassie stained polyacrylamide gel (7%) of plasma membrane protein samples (10 µg) and green fluorescence signals of Cdr1-mGFPHis of the same gel before Coomassie staining. M = Precision Plus Protein Marker. Lanes 1, 3, 5, and 7 are plasma membrane proteins of ADΔΔ and lanes 2, 4, 6, and 8 are plasma membrane proteins of ADΔΔ-CDR1-mGFPHis isolated from 20, 40, 60, and 80 ODU of cells, respectively. Cdr1-mGFPHis is indicated with a red arrow. The relative percentages of the green fluorescent signals are listed underneath. (C) Effect of cell density at breakage on the yield of isolated plasma membranes and the ATPase activity of Cdr1-mGFPHis. On the left, effect of the cell density (ODU/0.5 mL HB) on the amount of plasma membrane protein isolated from ADΔΔ and ADΔΔ-CDR1-mGFPHis (Cdr1) cells. On the right, effect of the cell density on the Cdr1 ATPase activity of the plasma membranes isolated from ADΔΔ-CDR1-mGFPHis cells. (D) Exemplary SDS-PAGE of 10 µL aliquots of the solubilization mixture (T; 0.5 mL), the pellet after solubilization (P; 0.5 mL), and the solubilized (supernatant) fractions (S; 0.5 mL) of detergent solubilized crude plasma membrane proteins of ADΔΔ-CDR1-mGFPHis (top) and in-gel fluorescence of Cdr1-mGFPHis before Coomassie staining of the same gel (bottom). M = broad MW pre-stained protein ladder (245, 180, 135, 100, 75, 63, and 48 kDa bands; the 180 kDa and 75 kDa bands are indicated with red and green arrows, respectively). Lanes A to L and N to Q are the T, S, and P fractions for DM (A), β-DDM (B), α-DDM (C), TDM (D), LMNG (E), OGNG (F), OG (G), LDAO (H), Hega (I), Mega (J), Triton-X100 (K), CHAPS (L), NM (N), Tween80 (O), Fos-choline-13 (P) and SDS (Q), respectively. Abbreviations are defined in the Table of Materials. Please click here to view a larger version of this figure.
Based on detergent screening results (Figure 3D), DDM (B and C) and Fos-choline-13 (P) appeared to be the best detergents for the solubilization of Cdr1-mGFPHis. However, the use of Fos-choline-13 seemed to cause partial proteolysis of Cdr1-mGFPHis (P in Figure 3D). LMNG (E), PCC-α-M (not shown) and possibly also DM (A) were the next best detergents. The detergent screen also showed that glucosides OGNG (F) and OG (G), CHAPS (L), NM (N), and Anzergents (not shown) were bad choices for the solubilization of Cdr1-mGFPHis as significant amounts of the protein were found in the insoluble pellet fractions (Figure 3D). SDS denatures Cdr1-XLmGFPHis, which is why no green fluorescence signals are visible in the Q lanes (Figure 3D).
The suitability of a detergent for the solubilization of properly folded native Cdr1-mGFPHis particles was also assessed by FSEC of the detergent solubilized plasma membrane protein (step 6.4 supernatant). Examples of chromatograms obtained for 100 µL crude plasma membrane protein from ADΔΔ-CDR1-mGFPHis (2 mg/mL) solubilized with 1% detergent are shown in Figure 4. The peak at 9 mL elution volume represents mostly aggregated Cdr1-mGFPHis that elutes in the void volume, whereas properly solubilized and correctly folded Cdr1-mGFPHis particles are represented by the Gaussian-shaped peak at 15.5 mL elution volume. The broad shoulder between 12 and 14 mL elution volume possibly contains less well-defined Cdr1-mGFPHis micelle particles and/or indicate partial misfolding or protein aggregates. Chromatograms of maltosides and LMNG extracted proteins showed most of Cdr1-mGFPHis eluting as a nicely shaped Gaussian peak at 15.5 mL with a small shoulder eluting slightly earlier at 14 mL (Figure 4A). These samples had no Cdr1-mGFPHis eluting in the void volume. The blank sample is the buffer plus DDM control that gave no mGFP signal. The chromatograms in Figure 4B highlight the importance of the type of sugar headgroup for the quality of the detergent solubilized Cdr1-mGFPHis particles. Glucose containing detergents (OG, NG, OGNG) performed worse than sucrose containing detergents (DDS), which in turn performed worse than maltose containing detergents (NM, DMNG, DDM). Cdr1-mGFPHis solubilized with glucose containing detergents eluted as an aggregated (OG) or broad aggregated peak (NG, OGNG), which was to be expected from the large proportion of Cdr1-mGFPHis precipitate in the pellet fractions for OGNG (F) and OG (G) observed in Figure 3D. Although the DMNG chromatogram (green; Figure 4B) was qualitatively similar to the DDM chromatogram (blue; Figure 4B), the higher peaks for DDM indicate that a large portion of DMNG solubilized Cdr1-mGFPHis may actually be denatured. Figure 4C shows the FSEC chromatograms for the zwitterionic Fos-cholines (Fos-choline-8, Fos-choline-10, Fos-choline-13) and two non-ionic detergents (digitonin, Triton-X100), and Figure 4D shows how loading twice as much (200 µL) detergent solubilized protein had no noticeable effect on the quality of the chromatogram for Fos-choline-8, -10, and -13 and DDM. Only digitonin (orange; Figure 4C) gave a similar chromatogram to DDM (blue; Figure 4C) and, although Fos-choline-13 gave a symmetrical sharp shaped peak, it again eluted with a significantly lower elution volume (14 mL) than that for DDM (15.5 mL). Overall, there was a clear trend of better solubilization by detergents with longer aliphatic side-chains of 12 or 13 carbon residues; e.g., DDM > DM > NM (12, 10, or 9 carbons), Fos-choline-13 > 10 > 8 (13, 10, or 8 carbons), and LMNG > DMNG > OGNG (12, 10, or 8 carbons), respectively. Thus, detergents with hydrophobic tails of less than 12 carbons were far less suitable detergents for solubilization of Cdr1-mGFPHis than detergents with longer hydrophobic tails of 12 or 13 carbons, and non-ionic detergents (DDM, LMNG) seemed generally more suitable for solubilization of Cdr1-mGFPHis than zwitterionic detergents (Figure 3D, Figure 4).
Figure 4: Detergent screening for Cdr1-mGFPHis solubilization using FSEC. Chromatograms of 100 µL of solubilized ADΔΔ-CDR1-mGFPHis crude plasma membrane (2 mg/mL) with 1% of the detergents indicated and separated using a Superose 6-increase 10/300 GL size exclusion column. The chromatograms depict the relative mGFP fluorescence units (FU) of one column volume (CV; 25 mL) of collected elution buffer. Please click here to view a larger version of this figure.
Despite recent progress in the structural analysis of membrane proteins, no 3D structure for Cdr1, or any other PDR transporter, is currently available. So, gaining knowledge of the Cdr1 structure and its biochemical features is important, as this will not only provide insight into rational design of novel drugs to overcome efflux-mediated drug resistance, but also into the mechanism of function of an important subfamily of ABC proteins.
One of the main requirements for the structural characterization of membrane proteins is the expression of correctly folded and intact membrane protein in quantities required for X-ray crystallography or cryo-EM. Important criteria when selecting an expression system are ease of use, growth rates and costs, and also the ability to express proteins with post-translational modifications that can be critical for the function and/or stability of a protein61,62.
Over the past two decades a S. cerevisiae membrane protein expression technology60 has been optimized14 to facilitate the one-step cloning of membrane proteins of interest24 tagged at either their N- or C-terminus with various affinity, epitope, or reporter tags and, if desired, their expression levels predictably repressed to anywhere between 50% to as low as 0.1% of the maximum expression level25. This versatile plasma membrane protein expression platform enables researchers to characterize fungal efflux pumps in great detail. The development and optimization of whole cell assays of pump function enabled the successful characterization of the substrate specificity24 and the inhibitor sensitivity of a number of major fungal multidrug efflux pumps, and they were employed in high-throughput drug screens to identify novel42,43,44, or confirm existing14,33,36, broad-spectrum efflux pump inhibitors or to develop novel efflux pump inhibitors specific for Cdr141.
Although the existing expression platform has been used successfully to express fungal ABC transporters from an array of fungi, including Basidomycota (C. neoformans Mdr1),14 filamentous fungi such as P. marneffei (Abc1)37 and many Saccharomycotina species (e.g., S. cerevisiae Pdr5, C. glabrata Cdr1 and Cdr2, C. utilis Cdr1, C. krusei Abc1, Abc11 and Abc12 and C. albicans Cdr1 and Cdr2),14,24,32,36,39,60,63 there has been less success expressing high levels of properly folded human ABC transporters64. Preliminary results indicate that this is due to the specific lipid environment that these transporters require for proper expression and function in yeast. Indications are that this may also be true for plant ABC transporters, although this has yet to be confirmed experimentally.
The major reasons for the significantly higher Cdr1 ATPase specific activities (i.e., preparations with less contaminating membranes) obtained with the optimized small-scale plasma membrane isolation protocol are two-fold: i) the gentler manual breakage of cells compared to using a bead-beater for larger scale plasma membrane preparations; and ii) the harvesting of cells at mid-log phase, which reduces possible mitochondrial contamination due to glucose repression of mitochondrial enzymes. The 3 min cooling periods between each of the six breakage cycles could be extended without any noticeable effect on the quality of the plasma membranes. Repeat freeze-thaw cycles are, however, to be avoided because the Cdr1 ATPase activities of the isolated plasma membranes reduced by ~10% with every additional freeze-thaw cycle. This is why it is recommended to split the plasma membrane samples into smaller aliquots to reduce the need for multiple freeze-thaw cycles. The mGFPHis double tag improves purification yield and allows efficient one-step detergent screening. By using this construct, correct localization, proper folding/trafficking and thermostability can be readily detected; and the double tag can be removed, if necessary, by cleavage with a commercially available protease, although the 3 amino acid-linker between the protein of interest and the tag may have to be extended for efficient removal of the tag.
The combination of several features in these protocols, namely, the use of a DNA polymerase specifically designed for the colony PCR amplification of the 8 kb transformation cassette; the optimized high efficiency yeast transformation method; the ability to create frozen competent yeast stocks; and the optimized small-scale plasma membrane preparation protocol demonstrate the creation of an optimized membrane protein expression platform amenable for the high-throughput cloning, expression, and characterization of fungal ABC efflux pumps.
The authors have nothing to disclose.
The authors gratefully acknowledge funding from the New Zealand Marsden Fund (Grant UOO1305), and a block grant from Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (M. Niimi). They wish to thank the University of Otago for providing G. Madani with a PhD Scholarship. The authors also wish to express their gratitude to Professor Stefan Raunser and his colleagues, Dr Amir Apelbaum, and Dr Deivanayagabarathy Vinayagam, for their support and supervision during a 6-month visit of G. Madani at the Max Planck Institute of Molecular Physiology (MPIMP), Dortmund, Germany. The authors also thank the German Academic Exchange Service (DAAD) for providing G. Madani with a research grant (57381332) to visit the MPIMP.
2-(N-Morpholino)ethane-sulphonic acid (MES) | Sigma-Aldrich | M3671 | |
2-Amino-2-(hydroxymethyl)-1,3-propanediol (Tris base; ultra-pure) | Merck | 77-86-1 | |
2,2-Didecylpropane-1,3-bis-β-D-maltopyranoside | Anatrace | NG310S | LMNG |
2,2-Dihexylpropane-1,3-bis-β-D-glucopyranoside | Anatrace | NG311S | OGNG (MNG-OG) |
2,2-Dioctylpropane-1,3-bis-β-D-maltopyranoside | Anatrace | NG322S | DMNG |
4-Trans-(4-trans-propylcyclohexyl)-cyclohexyl α-D-maltopyranoside | Glycon Biochemicals GmbH | D99019-C | PCC-α-M |
40% Acrylamide/Bis-acrylamide (37.5:1) | Bio-Rad | 1610148 | |
Acetic acid (glacial) | Merck | 64-19-7 | |
Agar | Formedium | 009002-18-0 | |
Ammonium molybdate | Sigma-Aldrich | 13106-76-8 | |
Ammonium persulphate (APS) | Bio-Rad | 1610700 | |
ATP disodium salt | sigma-Aldrich | A-6419 | |
Bromophenol blue | SERVA Electrophoresis GmbH | 34725-61-6 | |
CHAPS | Anatrace | C316S | |
CHAPSO | Anatrace | C317S | |
CSM | Formedium | DCS0019 | |
CSM minus uracil | Formedium | DCS0161 | |
Cyclohexyl-1-butyl-β-D-maltopyranoside | Anatrace | C324S | CYMAL-4 |
Cyclohexyl-1-heptyl-β-D-maltopyranoside | Anatrace | C327S | CYMAL-7 |
Cyclohexyl-methyl-β-D-maltopyranoside | Anatrace | C321S | CYMAL-1 |
Digitonin | Sigma-Aldrich | 11024-24-1 | |
Dithiothreitol (DTT) | Roche Diagnostics | 10197785103 | |
DMSO | Merck | 67-68-5 | |
Ethanol | Merck | 459836 | |
Ethylenediaminetetraacetic acid disodium salt (EDTA; Titriplex III) | Merck | 6381-92-6 | |
ExoSAP-IT PCR Product Cleanup Reagent | Applied Biosystems | 78205 | A blend of exonuclease and phosphatase |
Glucose | Formedium | 50-99-7 | |
Glycerol | Merck | 56-81-5 | |
Glycine | Merck | G8898 | |
HEPES | Formedium | 7365-45-9 | |
Hydrochloric acid | Merck | 1003172510 | |
KOD Fx Neo | TOYOBO Co | KFX-201 | Use for reliable colony PCR |
lithium acetate (LiAc) | Sigma-Aldrich | 546-89-4 | |
Magnesium chloride hexa-hydrate | sigma-Aldrich | M2393 | |
MES | Formedium | 145224-94-8 | |
n-Decanoyl-N-hydroxyethyl-glucamide | Anatrace | H110S | HEGA-10 |
n-Decanoyl-N-methyl-glucamide | Anatrace | M320S | MEGA-10 |
n-Decyl-phosphocholine | Anatrace | F304S | Fos-choline-10 |
n-Decyl-β-D-maltopyranoside | Anatrace | D322S | DM |
n-Dodecyl-N,N-dimethyl-3-ammonio-1-propanesulphonate | Anatrace | AZ312S | Anzergent 3-12 |
n-Dodecyl-N,N-dimethylamine-N-oxide | Anatrace | D360S | LDAO |
n-Dodecyl-α-D-maltopyranoside | Anatrace | D310HA | α-DDM |
n-Dodecyl-β-D-maltopyranoside | Anatrace | D310S | β-DDM |
n-Nonyl-β-D-glucopyranoside | Anatrace | N324S | NG |
n-Nonyl-β-D-maltopyranoside | Anatrace | N330S | NM |
n-Octadecyl-N,N-dimethyl-3-ammonio-1-propanesulphonate | Anatrace | AZ318S | Anzergent 3-18 |
n-Octyl-N,N-dimethyl-3-ammonio-1-propanesulphonate | Anatrace | AZ308S | Anzergent 3-8 |
n-Octyl-phosphocholine | Anatrace | F300S | Fos-choline-8 |
n-Octyl-β-D-glucopyranoside | Anatrace | O311S | OG |
n-Tetradecyl-phosphocholine | Anatrace | F312S | Fos-choline-14 |
n-Tetradecyl-β-D-maltopyranoside | Anatrace | T315S | TDM |
n-Tridecyl-phosphocholine | Anatrace | F310S | Fos-choline-13 |
n-Tridecyl-β-D-maltopyranoside | Anatrace | T323S | – |
n-Undecyl-β-D-maltopyranoside | Anatrace | U300S | UM (UDM) |
N,N,N’,N’-tetramethyl-ethylenediamine (TEMED) | Sigma-Aldrich | T9281 | |
Octylphenoxypolyethoxyethanol | Sigma-Aldrich | 9002-93-1 | TRITON X-100 |
Oligomycin | Sigma-Aldrich | 75351 | |
Peptone | Formedium | 3049-73-7 | |
phenylmethylsulfonyl fluoride (PMSF) | Roche Diagnostics | 329-98-6 | |
Phusion Hot Start Flex DNA Polymerase | New England Biolabs | M0535S | High-fidelity DNA polymerase |
polyethylene glycol (PEG 3350) | Sigma-Aldrich | 25322-68-3 | |
polyoxyethylenesorbitan monooleate | Sigma-Aldrich | 9005-65-6 | TWEEN 80 |
Potassium nitrate | Sigma-Aldrich | P8394 | |
Protein Assay Kit | Bio-Rad | 5000122 | RC DC Protein Assay Kit II |
QC Colloidal Coomassie Stain | Bio-Rad | 1610803 | |
Prism Ultra Protein Ladder (10-245 kDa) | Abcam | AB116028 | |
Sodium azide | Sigma-Aldrich | 71289 | |
Sodium dodecyl sulphate | Sigma-Aldrich | 151-21-3 | SDS |
Sodium L-ascorbate BioXtra | Sigma-Aldrich | 11140 | |
Sucrose Monododecanoate | Anatrace | S350S | DDS |
Sulphuric acid | Sigma-Aldrich | 339741 | |
Yeast extract | Formedium | 008013-01-2 | |
Yeast nitrogen base without amino acids | Formedium | CYN0402 | |
Equipment (type) | |||
Centrifuge (Eppendorf 5804) | Eppendorf | ||
Centrifuge (Beckman Ultra) | Beckman | ||
Centrifuge (Sorvall RC6) | Sorvall | ||
FSEC apparatus (NGC Chromatography Medium Pressure system equipped with a fluorescence detector, an autosampler, a fractionator) | Bio-Rad | ||
Gel imaging (GelDoc EZ Imager) | Bio-Rad | ||
Microplate reader (Synergy 2 Multi-Detection) | BioTek Instruments | ||
PCR thermal cycler (C1000 Touch) | Bio-Rad | ||
Power supply (PowerPac) | Bio-Rad | ||
SDS PAGE (Mini-PROTEAN Tetra) | Bio-Rad | ||
Shaking incubator (Multitron) | Infors HT, Bottmingen | ||
Superose 6 Increase 10/300 GL | GE Healthcare Life Sciences | GE17-5172-01 | |
UV/Visible spectrophotometer (Ultraspec 6300 pro) | Amersham BioSciences UK Ltd |