Waiting
Procesando inicio de sesión ...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

在棕榈酸诱导的 体外 模型中研究鸭嘴豆素D对非酒精性脂肪肝疾病的保护作用

Published: December 2, 2022 doi: 10.3791/64816
* These authors contributed equally

Summary

该方案研究了桔霉素D在棕榈酸诱导的 体外 模型中对非酒精性脂肪性肝病的保护作用。

Abstract

非酒精性脂肪性肝病(NAFLD)的发病率在全球范围内以惊人的速度增加。 大鸭 嘴龙被广泛用作治疗各种疾病的传统民族医学,是一种典型的功能性食品,可以纳入日常饮食。研究表明,扁平紫芪D(PD)是 大花桫椤的主要活性成分之一,具有很高的生物利用度,可显着缓解NAFLD的进展,但其潜在机制尚不清楚。本研究旨在探讨PD在 体外对NAFLD的治疗效果。用300μM棕榈酸(PA)预处理AML-12细胞24小时,以在 体外模拟NAFLD。然后,细胞要么用PD处理,要么在24小时内不接受PD处理。采用2′,7′-二氯-二氢荧光素二乙酸酯(DCFH-DA)染色分析活性氧(ROS)水平,采用JC-1染色法测定线粒体膜电位。此外,通过蛋白质印迹分析细胞裂解物中LC3-II/LC3-I和p62/SQSTM1的蛋白表达水平。与对照组相比,PD发现PA处理组的ROS和线粒体膜电位水平显着降低。同时,与对照组相比,PA处理组PD升高了LC3-II/LC3-I水平,降低了p62/SQSTM1水平。结果表明,PD通过减少氧化应激和刺激自噬来改善体 NAFLD。该 体外 模型是研究PD在NAFLD中的作用的有用工具。

Introduction

Platycodon grandiflorus (PG),这是Platycodon grandiflorus(Jacq)的干根。A.DC.,用于传统中医(TCM)。主要产于我国东北、华北、华东、中部、西南地区1.PG组分包括三萜皂苷、多糖、黄酮类、多酚、聚乙二醇、挥发油和矿物质2。PG在亚洲被用作食品和草药的历史悠久。传统上,这种草药被用来制造治疗肺部疾病的药物。现代药理学也提供了PG治疗其他疾病疗效的证据。研究表明,PG对多种药物性肝损伤模型具有治疗作用。膳食补充PG或桔霉素提取物可以改善高脂肪饮食引起的肥胖及其相关的代谢疾病345。来自PG的多糖可用于治疗LPS/D-GalN引起的小鼠急性肝损伤6。此外,来自PG根部的皂苷可改善高脂肪饮食引起的非酒精性脂肪性肝炎(NASH)7。此外,铂族最重要的治疗成分之一桔霉素D(PD)可以增强人肝细胞癌(HepG2)细胞中低密度脂蛋白受体表达和低密度脂蛋白摄取8。此外,PD还可以诱导细胞凋亡并抑制HepG2细胞中的粘附,迁移和侵袭910。因此,本研究使用小鼠肝癌AML-12细胞进行体外模型构建,并进一步研究该模型中PD的药理作用和潜在机制。

术语非酒精性脂肪性肝病(NAFLD)是指一组肝脏疾病,包括单纯脂肪变性,NASH,肝硬化和肝细胞癌11。尽管NAFLD的发病机制尚不完全清楚,但从经典的“两击”理论到目前的“多次命中”理论,胰岛素抵抗被认为是NAFLD发病机制的核心121314。研究表明,肝细胞中的胰岛素抵抗可能导致游离脂肪酸增加,游离脂肪酸形成沉淀在肝脏中的甘油三酯并导致肝脏变胖1516.脂肪的积累可导致脂毒性、氧化应激诱导的线粒体功能障碍、内质网应激和炎性细胞因子释放,导致NAFLD1718的发病机制和进展。此外,自噬也在NAFLD的发病机制中发挥作用,因为它参与调节细胞胰岛素敏感性,细胞脂质代谢,肝细胞损伤和先天免疫192021

已经建立了多种动物模型和细胞模型,为探索NAFLD2223的发病机制和潜在治疗靶点提供了基础。然而,单个动物模型不能完全模拟NAFLD24的所有病理过程。动物之间的个体差异导致不同的病理特征。在NAFLD的 体外 研究中使用肝细胞系或原代肝细胞可确保实验条件下的最大一致性。肝脂代谢失调可导致NAFLD25中肝细胞脂滴积聚水平较高。油酸和棕榈油等游离脂肪酸已在 体外 模型中用于模拟由高脂肪饮食引起的NAFLD2627。人肝母细胞瘤细胞系HepG2常用于 体外NAFLD模型的构建,但作为肿瘤细胞系,HepG2细胞的代谢与正常生理条件下的肝细胞代谢明显不同28。因此,使用原代肝细胞或小鼠原代肝细胞构建体 NAFLD模型进行药物筛选比使用肿瘤细胞系更有利。比较动物模型和 外肝细胞模型中药物效果和治疗靶点的协同检查,似乎利用小鼠肝细胞构建体 NAFLD模型具有更好的应用潜力。

进入肝脏的游离脂肪酸被氧化以产生能量或储存为甘油三酯。值得注意的是,游离脂肪酸具有一定的脂毒性,并可能诱导细胞功能障碍和细胞凋亡12。棕榈酸(PA)是人血浆中最丰富的饱和脂肪酸29。当非脂肪组织中的细胞长时间暴露于高浓度的PA时,这会刺激活性氧(ROS)的产生并引起氧化应激,脂质积累,甚至细胞凋亡30。因此,许多研究人员使用PA作为诱导剂来刺激肝细胞产生ROS,从而构建体脂肪肝疾病模型并评估某些活性物质对细胞的保护作用31323334本研究介绍了一种研究PD对PA诱导的NAFLD细胞模型的保护作用的方案。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

AML-12细胞(一种正常的小鼠肝细胞系)用于基于细胞的研究。细胞是从商业来源获得的(见 材料表)。

1. AML-12细胞的预处理以体外模拟NAFLD

  1. 将细胞维持在正常细胞培养基(DMEM 加含有 0.005 mg/mL 胰岛素、5 ng/mL 硒、0.005 mg/mL 转铁蛋白、40 ng/mL 地塞米松和 10% 胎牛血清 [FBS],参见 材料表)中的细胞在 37 °C 下,在含有 5% CO2 的潮湿气氛中。
  2. 将细胞接种在密度为 2.8 x 105 个细胞/孔的 12 孔板 (1 mL/孔) 中。
    注意:所有细胞消化和培养基交换操作均在生物安全柜中进行,以避免污染细胞。
  3. 孵育过夜(~10小时)后取出细胞的培养基,然后用1mL无血清培养基(每孔)洗涤细胞两次。
  4. 将12孔细胞板从左到右分为四个不同的治疗组,包括(1)对照组,(2)PD处理组,(3)PA处理组和(4)PA + PD处理组。
    注意:每个实验处理组的三个重复从上到下排列在同一12孔细胞板上。
  5. 将正常细胞培养基(1 mL /孔)加入对照组和PD处理组,并向PA处理和PA + PD处理组添加补充有300μM PA的正常细胞培养基(1 mL /孔)。
  6. 孵育24小时后取出细胞的培养基,然后用1mL无血清培养基(每孔)洗涤细胞两次。
  7. 向对照组加入补充有载体(二甲基亚砜,DMSO,0.1% v / v)的正常细胞培养基(1mL /孔);向PD处理组加入补充有1μM PD的正常细胞培养基(1mL /孔);向PA处理组加入补充有300μM PA的正常细胞培养基(1mL /孔);将补充有300μM PA和1μM PD的正常细胞培养基(1mL /孔)添加到PA + PD处理组中。
  8. 再孵育24小时后,使用2′,7′-二氯-二氢荧光素二乙酸酯(DCFH-DA)染色(步骤2),JC-1染色(步骤3)和蛋白质印迹(步骤4)研究PD对细胞的保护作用。
    注意:所有孵育操作均在37°C下在含有5%CO2的加湿气氛中进行。

2. ROS生产变化的测量

注意:根据DCFH-DA染色测定评估细胞中的细胞内ROS水平。

  1. 在处理期结束时(步骤1.8),每孔用1mL磷酸盐缓冲盐水(1x PBS,pH 7.4)洗涤细胞三次,然后用100μL的10μM DCFH-DA每孔染色细胞(参见 材料表)。将细胞在黑暗中孵育30分钟。
    注意:如果在孵育30分钟后没有观察到明显的绿色荧光,则可以适当增加探针和细胞的孵育时间(30-60分钟)。如果在孵育30分钟后观察到绿色荧光值的过度曝光,则可以适当减少探针和细胞的孵育时间(15-30分钟)。
  2. 用 1x PBS(1 mL/孔)洗涤细胞三次。向每个孔中加入 1 mL 的 1x PBS。
  3. 将12孔板放在显微镜载物台上(参见 材料表),然后使用20倍物镜观察细胞的形态(放大倍数:200倍)。
  4. 使用激发波长为480nm,发射波长为530nm的绿色荧光通道在荧光显微镜上为每个孔捕获三个代表性荧光图像(放大倍数:200x)。
    注意:建议使用激发波长为 480 nm 和发射波长为 530 nm 的绿色荧光通道来检测 DCFH-DA。此外,DCFH-DA可以通过荧光显微镜3536中GFP和FITC的参数设置进行检测。
  5. 最后,用图像采集软件处理图像(见 材料表),然后使用ImageJ软件计算每组的平均荧光强度或不同组的比率。
    注意:用于成像工作的荧光显微镜和Image J软件的技术细节已在前面描述3738

3.线粒体膜电位变化的测量

注意:通过JC-1染色测定监测线粒体膜电位的变化。

  1. 在处理期结束时(步骤1.8),每孔用1mL的1x PBS洗涤细胞三次,然后用100μL的5μg/ mL JC-1工作溶液(参见 材料表)在37°C下在黑暗中染色细胞30分钟。
    注意:如果在孵育30分钟后没有观察到明显的绿色荧光,则可以适当增加探针和细胞的孵育时间(30-60分钟)。如果在孵育30分钟后观察到绿色荧光值的过度曝光,则可以适当减少探针和细胞的孵育时间(15-30分钟)。
  2. 用 1x PBS(1 mL/孔)洗涤细胞三次。向每个孔中加入 1 mL 的 1x PBS。
  3. 将12孔板放在显微镜载物台上,然后使用20倍物镜观察细胞的形态(放大倍数:200倍)。
  4. 使用激发和发射波长分别为485nm和535nm的绿色荧光通道以及激发和发射波长分别为550nm和600nm的红色荧光通道,在荧光显微镜上为每个孔捕获三个代表性荧光图像(放大倍数:200倍)。
    注意:激发波长为485nm,发射波长为535nm的绿色荧光通道用于检测JC-1单体,其被视为去极化线粒体394041,激发波长为550nm,发射波长为600nm的红色荧光通道用于检测JC-1二聚体 其被视为极化线粒体394041
  5. 最后,用图像采集软件对图像进行处理,然后使用Image J软件计算各组的平均荧光强度或不同组的比值。
    注意:用于成像工作的荧光显微镜和Image J软件的技术细节已在前面描述3738

4. LC3-II/LC3-I和p62/SQSTM1蛋白表达水平的测定

  1. 处理后(步骤1.8),用在4°C下预冷的1x PBS(1mL /孔)洗涤细胞三次。
  2. 将补充有蛋白酶和磷酸酶抑制剂混合物(1x)(参见 材料表)的RIPA裂解缓冲液(100μL /孔)加入12孔板中,并在冰上裂解5分钟。
  3. 将细胞裂解物收集到1.5mL微量离心管中,并在4°C下以12,000× g 离心20分钟。 按照标准程序42,通过BCA方法测定上清液的蛋白质浓度。
  4. 向细胞裂解物上清液(体积比= 1:4)中加入SDS-PAGE样品上样缓冲液(5x,参见 材料表)。
  5. 通过涡旋混合(高速~15秒),并将混合样品在100°C下加热5分钟以使蛋白质变性。
  6. 将12-充分制备的12%SDS-PAGE凝胶放入电泳槽中,然后将用超纯水稀释的SDS上样品缓冲液(1x)加入至高度极限位置。
    注意:SDS-PAGE凝胶是根据制造商的说明使用商业试剂盒(见 材料表)制备的。
  7. 将蛋白质标记物(5 μL/孔)和样品(20 μg/孔)添加到SDS-PAGE凝胶的不同孔中。
  8. 将稳定电压模式设置为100 V,并进行电泳80分钟。
  9. SDS-PAGE电泳后,按照先前发表的报告43,44将蛋白质电转移到聚偏二氟乙烯(PVDF)膜(0.45μM参见材料表)上。
  10. 蛋白质电转印后,在室温下在摇床中用 10 mL TBST(1x TBS,0.1% 吐温 20)洗涤 PVDF 膜两次(5 分钟/次)。
  11. 在室温下用5mL牛血清白蛋白(BSA,5%)在摇床中封闭PVDF膜1小时。
  12. 用 10 mL TBST 洗涤 PVDF 膜三次(10 分钟/次)。然后,将PVDF膜在5mL的特异性一抗中孵育,这些特异性一抗稀释在LC3(小鼠mAb,1:2,000),p62 / SQSTM1(以下简称p62,小鼠mAb,1:2,000)和β-肌动蛋白(小鼠mAb,1:2,000)(参见 材料表)的封闭缓冲液中,在4°C下孵育过夜。
  13. 在室温下用 10 mL TBST 洗涤 PVDF 膜三次(10 分钟/次)。然后,将PVDF膜与在封闭缓冲液(1:10,000)(见 材料表)中稀释的兔抗小鼠IgG(HRP)二抗在室温下孵育,并在避光下孵育2小时。
  14. 在室温下用 10 mL TBST 洗涤 PVDF 膜三次(10 分钟/次)。然后,将PVDF膜放在保鲜膜上,加入适量的ECL工作溶液(200μL/膜)(见 材料表),孵育2分钟。
  15. 孵育后,取出ECL工作溶液,将PVDF膜暴露在成像系统中进行图像显影。最后,使用Image J软件分析每个波段的灰度值。
    注意:用于成像工作的蛋白质印迹和Image J软件的技术细节已在前面描述4546

5. 统计分析

  1. 将实验数据显示为平均值±标准差 (SD)。
  2. 使用前面描述的统计软件工具执行显著性分析47.
  3. 使用 t 检验计算两组之间的统计差异。P 值低于 0.05 被认为具有统计显著性:*P < 0.05,**P < 0.01,***P < 0.005。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

细胞内的细胞内ROS
用300 μM PA诱导AML-12细胞24 h,建立NAFLD细胞模型。随后,用PD处理细胞24小时。用DCFH-DA荧光探针标记细胞,并在荧光显微镜下观察ROS的产生。细胞内ROS的DCFH-DA染色结果如图 1所示。结果表明,PD可显著降低300 μMPA孵育细胞中的细胞内ROS水平(P < 0.01),表明PD可以降低细胞氧化应激。

细胞的线粒体膜电位
线粒体是由内在细胞凋亡途径484950控制的中央细胞器。因此,在JC-1染色后,在荧光显微镜下观察与PD孵育24 h的AML-12细胞的线粒体膜电位(MMP)。如图2所示,PA处理的细胞中的绿色荧光(JC-1单体,处理为去极化线粒体394041)高于未处理的细胞。另一方面,PA处理的细胞中的红色荧光(JC-1二聚体,处理为偏振线粒体394041)低于未处理的细胞,表明PA诱导的细胞中的MMP去极化。此外,与模型组相比,PD处理组JC-1单体:二聚体的比例下降(P < 0.01),表明PD可以改善PA诱导的MMP去极化。

LC3-II/LC3-I和p62的蛋白表达水平
本研究还通过蛋白质印迹研究细胞中自噬相关蛋白LC3和p62的蛋白表达水平,研究了PD在自噬途径中的潜在作用。如图3所示,PA处理48 h后LC3-II:LC3-I的比例显著降低(P < 0.005),p62的蛋白表达水平升高(P < 0.01)。另一方面,PD可以显著降低p62的蛋白表达水平(P < 0.01),增加LC3-II:LC3-I的比例(P < 0.05),表明PD可能恢复PA抑制的自噬通量。

Figure 1
图1:通过DCFH-DA染色评估PD对细胞中细胞内ROS的影响 。 (A)通过荧光显微镜检测ROS产生,200x。比例尺:20 μm。 (B)不同组ROS水平的相对倍数变化。每列表示 SD ±平均值 (n = 3)。**P < 0.01。 请点击此处查看此图的大图。

Figure 2
图2:通过JC-1染色评估PD对细胞中MMP去极化的影响 。 (A)通过荧光显微镜检测MMP去极化,200x。比例尺:20 μm。 (B)不同组间JC-1单体:二聚体比的相对变化。每列表示 SD ±平均值 (n = 3)。**P < 0.01。 请点击此处查看此图的大图。

Figure 3
图3:通过蛋白质印迹评估PD对细胞中LC3-II/LC3-I和p62蛋白表达水平的影响。 (A)通过蛋白质印迹检测LC3,p62和β-肌动蛋白的蛋白质水平。(B)不同组别LC3-II:LC3-I比值的相对变化。(C)不同组中p62表达的相对倍数变化。每列表示 SD ±平均值 (n = 3)。*P < 0.05, **P < 0.01, ****P < 0.001。 请点击此处查看此图的大图。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

研究强调,NAFLD是一种临床病理综合征,从脂肪肝到NASH,可进展为肝硬化和肝癌51。高脂肪饮食和不活跃的生活方式是NAFLD的典型危险因素。非药物治疗和用于NAFLD治疗的药物治疗都已研究515253。然而,NAFLD的发病机制尚未完全阐明。这里描述的方法涉及由PA刺激的AML-12细胞建立的NAFLD体模型。我们研究了PD在该模型中对NAFLD的保护作用,我们发现PD减弱了PA诱导的ROS增加。此外,PD还改善了PA诱导的MMP去极化。此外,PD可以显著降低p62的蛋白表达水平,提高LC3-II:LC3-I的比例。这些实验结果可为PD作为活性药物成分用于NAFLD治疗提供依据。

作为一种主要的细胞内降解途径,自噬通过降解细胞中的多余成分来实现营养原料的循环和再利用的生理过程1954。自噬也是机体维持“阴阳平衡”的关键修复机制,是中医555657中“气转化”的微观体现。在本协议中,除了检测ROS产生和MMP去极化的变化外,还通过蛋白质印迹检测自噬相关蛋白LC-3和p62的蛋白表达水平,研究了PD在自噬途径中的潜在作用。PA诱导细胞PD处理后,LC3-II:LC3-I的比例降低,p62的积累增加,表明自噬水平降低。实验结果与其他文献报道20345859一致。这种体外细胞模型可能有助于提高对PD生物学功能的理解,并有助于研究使用其他活性中药物质治疗NAFLD。

实验过程中有一些关键步骤。为了确定 体外 NAFLD模型是否成功建立,可以通过油红O染色比较正常对照和PA处理组细胞中的脂滴沉积,如前所述6061。DCFH-DA染色或JC-1染色后,必须洗掉未进入细胞的剩余探针;否则,这将在拍摄荧光图像时导致高背景。此外,必须缩短荧光探针(DCFH-DA或JC-1)的加载和测量之间的时间(孵育时间除外),以减少实验错误的可能性。此外,如果阴性对照组中细胞的荧光值相对较高,则可以根据需要调整荧光探针(DCFH-DA或JC-1)的工作浓度。或者,可以根据实际实验条件在15-60分钟的时间范围内适当调整JC-1工作溶液和细胞的孵育时间。

这种 体外 细胞模型也存在一些局限性。肝实质细胞、肝星状细胞、库普弗细胞和血管内皮细胞等细胞存在于肝组织中62。因此,仅对肝实质细胞的实验可能不足以解释药物的作用。其他细胞模型也需要用于抗NAFLD药物发现。此外,三维(3D)细胞培养系统已被用于构建肝脏模型和测试肝毒性6364。未来的研究将侧重于使用共培养和3D细胞培养技术开发体 模型,以进行潜在的抗NAFLD药物筛选。

作为一种多系统疾病,许多因素在NAFLD的发展和进展中起作用,这意味着单个动物模型或细胞模型不能完全模拟该疾病的所有病理过程65。过度依赖动物模型的使用增加了治疗药物开发的负担。在抗NAFLD药物开发的早期阶段使用 体外 细胞模型更实用且更具成本效益。本研究采用正常小鼠肝细胞系AML-12构建NAFLD 体外 模型,并验证了PD的治疗效果。值得注意的是,本研究结果为进一步研究PD在小鼠肝细胞和原代肝细胞模型中的抗NAFLD作用提供了基础。

总之,本文介绍了一种体 模型来研究PD对NAFLD的保护作用。这也可能是研究中药其他活性物质治疗NAFLD疗效的有用 体外 模型。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者声明不存在利益冲突。

Acknowledgments

这项工作得到了重庆市科委(cstc2020jxjl-jbky10002、jbky20200026、cstc2021jscx-dxwtBX0013、jbky20210029)和中国博士后科学基金(编号:2021MD703919)的资助。

Materials

Name Company Catalog Number Comments
5% BSA Blocking Buffer Solarbio, Beijing, China SW3015
AML12 (alpha mouse liver 12) cell line Procell Life Science&Technology Co., Ltd, China AML12
Beyo ECL Plus Beyotime, Shanghai, China P0018S
Bio-safety cabinet Esco Micro Pte Ltd, Singapore AC2-5S1 A2 
cellSens Olympus, Tokyo, Japan 1.8
Culture CO2 Incubator Esco Micro Pte Ltd, Singapore CCL-170B-8
Dexamethasone Beyotime, Shanghai, China ST125
Dimethyl sulfoxide Solarbio, Beijing, China D8371
DMEM/F12 Hyclone, Logan, UT, USA SH30023.01
Foetal Bovine Serum Hyclone, Tauranga, New Zealand SH30406.05
Graphpad software GraphPad Software Inc., San Diego, CA, USA 8.0
HRP Goat Anti-Mouse IgG (H+L) ABclonal, Wuhan, China AS003
Hydrophobic PVDF Transfer Membrane Merck, Darmstadt, Germany IPFL00010
Insulin, Transferrin, Selenium Solution, 100× Beyotime, Shanghai, China C0341
MAP LC3β Antibody Santa Cruz Biotechnology (Shanghai) Co., Ltd SC-376404
Mitochondrial Membrane Potential Assay Kit with JC-1 Solarbio, Beijing, China M8650
Olympus Inverted Microscope IX53 Olympus, Tokyo, Japan IX53
Palmitic Acid Sigma, Germany P0500
Penicillin-Streptomycin Solution (100x) Hyclone, Logan, UT, USA SV30010
Phenylmethanesulfonyl fluoride Beyotime, Shanghai, China ST506
Phosphate Buffered Solution Hyclone, Logan, UT, USA BL302A
Platycodin D Chengdu Must Bio-Technology Co., Ltd, China CSA: 58479-68-8
Protease inhibitor cocktail for general use, 100x Beyotime, Shanghai, China P1005
Protein Marker Solarbio, Beijing, China PR1910
Reactive Oxygen Species Assay Kit Solarbio, Beijing, China CA1410
RIPA Lysis Buffer Beyotime, Shanghai, China P0013E
SDS-PAGE Gel Quick Preparation Kit Beyotime, Shanghai, China P0012AC
SDS-PAGE Sample Loading Buffer, 5x Beyotime, Shanghai, China P0015
Sigma Centrifuge Sigma, Germany 3K15
SQSTM1/p62 Antibody Santa Cruz Biotechnology (Shanghai) Co., Ltd SC-28359
Tecan Infinite 200 PRO   Tecan Austria GmbH, Austria 1510002987
WB Transfer Buffer,10x Solarbio, Beijing, China D1060
β-Actin Mouse mAb ABclonal, Wuhan, China AC004

DOWNLOAD MATERIALS LIST

References

  1. Xunyan, X. Y., Fang, X. M. The effect of Platycodon grandiflorum and its historical change in the clinical application of Platycodonis radix. Zhonghua Yi Shi Za Shi. 51 (3), 167-176 (2021).
  2. Ma, X., et al. Platycodon grandiflorum extract: Chemical composition and whitening, antioxidant, and anti-inflammatory effects. RSC Advances. 11 (18), 10814-10826 (2021).
  3. Ke, W., et al. Dietary Platycodon grandiflorus attenuates hepatic insulin resistance and oxidative stress in high-fat-diet induced non-alcoholic fatty liver disease. Nutrients. 12 (2), 480 (2020).
  4. Kim, Y. J., et al. Platycodon grandiflorus root extract attenuates body fat mass, hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue. Nutrients. 8 (9), 532 (2016).
  5. Park, H. M., et al. Mass spectrometry-based metabolomic and lipidomic analyses of the effects of dietary Platycodon grandiflorum on liver and serum of obese mice under a high-fat diet. Nutrients. 9 (1), 71 (2017).
  6. Qi, C., et al. Platycodon grandiflorus polysaccharide with anti-apoptosis, anti-oxidant and anti-inflammatory activity against LPS/D-GalN induced acute liver injury in mice. Journal of Polymers and the Environment. 29 (12), 4088-4097 (2021).
  7. Choi, J. H., et al. Saponins from the roots of Platycodon grandiflorum ameliorate high fat diet-induced non-alcoholic steatohepatitis. Biomedicine & Pharmacotherapy. 86, 205-212 (2017).
  8. Choi, Y. J., et al. Platycodin D enhances LDLR expression and LDL uptake via down-regulation of IDOL mRNA in hepatic cells. Scientific Reports. 10, 19834 (2020).
  9. Li, T., et al. Platycodin D triggers autophagy through activation of extracellular signal-regulated kinase in hepatocellular carcinoma HepG2 cells. European Journal of Pharmacology. 749, 81-88 (2015).
  10. Lu, J. -J., et al. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chinese Journal of Natural Medicines. 13 (9), 673-679 (2015).
  11. Neuschwander-Tetri, B. A. Therapeutic landscape for NAFLD in 2020. Gastroenterology. 158 (7), 1984-1998 (2020).
  12. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M., Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine. 24 (7), 908-922 (2018).
  13. Bessone, F., Razori, M. V., Roma, M. G. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cellular and Molecular Life Sciences. 76 (1), 99-128 (2019).
  14. Buzzetti, E., Pinzani, M., Tsochatzis, E. A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 65 (8), 1038-1048 (2016).
  15. Watt, M. J., Miotto, P. M., De Nardo, W., Montgomery, M. K. The liver as an endocrine organ-Linking NAFLD and insulin resistance. Endocrine Reviews. 40 (5), 1367-1393 (2019).
  16. Khan, R. S., Bril, F., Cusi, K., Newsome, P. N. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology. 70 (2), 711-724 (2019).
  17. Karkucinska-Wieckowska, A., et al. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. European Journal of Clinical Investigation. 52 (3), 13622 (2022).
  18. Tilg, H., Adolph, T. E., Dudek, M., Knolle, P. Non-alcoholic fatty liver disease: The interplay between metabolism, microbes and immunity. Nature Metabolism. 3 (12), 1596-1607 (2021).
  19. Qian, H., et al. Autophagy in liver diseases: A review. Molecular Aspects of Medicine. 82, 100973 (2021).
  20. Du, J., Ji, Y., Qiao, L., Liu, Y., Lin, J. Cellular endo-lysosomal dysfunction in the pathogenesis of non-alcoholic fatty liver disease. Liver International. 40 (2), 271-280 (2020).
  21. Allaire, M., Rautou, P. E., Codogno, P., Lotersztajn, S. Autophagy in liver diseases: Time for translation. Journal of Hepatology. 70 (5), 985-998 (2019).
  22. Kanuri, G., Bergheim, I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). International Journal of Molecular Sciences. 14 (6), 11963-11980 (2013).
  23. Lau, J. K., Zhang, X., Yu, J. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. The Journal of Pathology. 241 (1), 36-44 (2017).
  24. Reimer, K. C., Wree, A., Roderburg, C., Tacke, F. New drugs for NAFLD: Lessons from basic models to the clinic. Hepatology International. 14 (1), 8-23 (2020).
  25. Carpino, G., et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology. 72 (2), 470-485 (2020).
  26. Vergani, L. Fatty acids and effects on in vitro and in vivo models of liver steatosis. Current Medicinal Chemistry. 26 (19), 3439-3456 (2019).
  27. Scorletti, E., Carr, R. M. A new perspective on NAFLD: Focusing on lipid droplets. Journal of Hepatology. 76 (4), 934-945 (2022).
  28. Green, C. J., Pramfalk, C., Morten, K. J., Hodson, L. From whole body to cellular models of hepatic triglyceride metabolism: Man has got to know his limitations. American Journal of Physiology-Endocrinology and Metabolism. 308 (1), 1-20 (2015).
  29. Gambino, R., et al. Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load. International Journal of Molecular Sciences. 17 (4), 479 (2016).
  30. Marra, F., Svegliati-Baroni, G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. Journal of Hepatology. 68 (2), 280-295 (2018).
  31. Zhang, J., Zhang, H., Deng, X., Zhang, Y., Xu, K. Baicalin protects AML-12 cells from lipotoxicity via the suppression of ER stress and TXNIP/NLRP3 inflammasome activation. Chemico-Biological Interactions. 278, 189-196 (2017).
  32. Liang, Y., et al. γ-Linolenic acid prevents lipid metabolism disorder in palmitic acid-treated alpha mouse liver-12 cells by balancing autophagy and apoptosis via the LKB1-AMPK-mTOR pathway. Journal of Agricultural and Food Chemistry. 69 (29), 8257-8267 (2021).
  33. Peng, Z., et al. Nobiletin alleviates palmitic acid-induced NLRP3 inflammasome activation in a sirtuin 1dependent manner in AML12 cells. Molecular Medicine Reports. 18 (6), 5815-5822 (2018).
  34. Xu, T., et al. Ferulic acid alleviates lipotoxicity-induced hepatocellular death through the SIRT1-regulated autophagy pathway and independently of AMPK and Akt in AML-12 hepatocytes. Nutrition & Metabolism. 18 (1), 13 (2021).
  35. Aranda, A., et al. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: A quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicology in Vitro. 27 (2), 954-963 (2013).
  36. Eruslanov, E., Kusmartsev, S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods in Molecular Biology. 594, 57-72 (2010).
  37. Bankhead, P. Analyzing Fluorescence Microscopy Images with ImageJ. , Queen's University Belfast. Belfast, Ireland. (2014).
  38. Wiesmann, V., et al. Review of free software tools for image analysis of fluorescence cell micrographs. Journal of Microscopy. 257 (1), 39-53 (2015).
  39. Lugli, E., Troiano, L., Cossarizza, A. Polychromatic analysis of mitochondrial membrane potential using JC-1. Current Protocols in Cytometry. , Chapter 7, Unit 7.32 (2007).
  40. Sivandzade, F., Bhalerao, A., Cucullo, L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio-protocol. 9 (1), 3128 (2019).
  41. Chazotte, B. Labeling mitochondria with JC-1. Cold Spring Harbor Protocols. 2011 (9), (2011).
  42. Walker, J. M. The bicinchoninic acid (BCA) assay for protein quantitation. The Protein Protocols Handbook. , Humana Press. Totowa, NJ. 11-15 (2009).
  43. Goldman, A., Ursitti, J. A., Mozdzanowski, J., Speicher, D. W. Electroblotting from polyacrylamide gels. Current Protocols in Protein Science. 82, 1-16 (2015).
  44. Mozdzanowski, J., Speicher, D. W. Proteins from polyacrylamide gels onto PVDF membranes. Current Research in Protein Chemistry. , 87 (2012).
  45. Davarinejad, H. Quantifications of western blots with ImageJ. University of York. , Available from: http://www.yourku.ca/yisheng/internal/Protocols/Imagej.pdf (2015).
  46. Taylor, S. C., Posch, A. The design of a quantitative western blot experiment. Biomed Research International. 2014, 361590 (2014).
  47. Motulsky, H. J. Graphpad Statistics Guide. Options for multiple t tests. Graphpad. , (2020).
  48. Poltorak, A. Cell death: All roads lead to mitochondria. Current Biology. 32 (16), 891-894 (2022).
  49. Dadsena, S., Jenner, A., García-Sáez, A. J. Mitochondrial outer membrane permeabilization at the single molecule level. Cellular and Molecular Life Sciences. 78 (8), 3777-3790 (2021).
  50. Green, D. R., Kroemer, G. The pathophysiology of mitochondrial cell death. Science. 305 (5684), 626-629 (2004).
  51. Lange, N. F., Radu, P., Dufour, J. F. Prevention of NAFLD-associated HCC: Role of lifestyle and chemoprevention. Journal of Hepatology. 75 (5), 1217-1227 (2021).
  52. Liu, X., Zhang, Y., Ma, C., Lin, J., Du, J. Alternate-day fasting alleviates high fat diet induced non-alcoholic fatty liver disease through controlling PPARalpha/Fgf21 signaling. Molecular Biology Reports. 49 (4), 3113-3122 (2022).
  53. Romero-Gomez, M., Zelber-Sagi, S., Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. Journal of Hepatology. 67 (4), 829-846 (2017).
  54. Mizushima, N., Levine, B. Autophagy in human diseases. New England Journal of Medicine. 383 (16), 1564-1576 (2020).
  55. Cui, B., Yu, J. M. Autophagy: A new pathway for traditional Chinese medicine. Journal of Asian Natural Products Research. 20 (1), 14-26 (2018).
  56. Law, B. Y., et al. New potential pharmacological functions of Chinese herbal medicines via regulation of autophagy. Molecules. 21 (3), 359 (2016).
  57. Zhou, H., et al. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. European Journal of Pharmacology. 898, 173976 (2021).
  58. Zhang, L., Yao, Z., Ji, G. Herbal extracts and natural products in alleviating non-alcoholic fatty liver disease via activating autophagy. Frontiers in Pharmacology. 9, 1459 (2018).
  59. Zhang, X., et al. C-X-C motif chemokine 10 impairs autophagy and autolysosome formation in non-alcoholic steatohepatitis. Theranostics. 7 (11), 2822-2836 (2017).
  60. Li, C. X., et al. Allyl isothiocyanate ameliorates lipid accumulation and inflammation in nonalcoholic fatty liver disease via the Sirt1/AMPK and NF-kappaB signaling pathways. World Journal of Gastroenterology. 25 (34), 5120-5133 (2019).
  61. Li, S., et al. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology. 66 (3), 936-952 (2017).
  62. Farrell, G. C., Teoh, N. C., McCuskey, R. S. Hepatic microcirculation in fatty liver disease. The Anatomical Record. 291 (6), 684-692 (2008).
  63. Milner, E., et al. Emerging three-dimensional hepatic models in relation to traditional two-dimensional in vitro assays for evaluating drug metabolism and hepatoxicity. Medicine in Drug Discovery. 8, 100060 (2020).
  64. Zhang, X., Jiang, T., Chen, D., Wang, Q., Zhang, L. W. Three-dimensional liver models: State of the art and their application for hepatotoxicity evaluation. Critical Reviews in Toxicology. 50 (4), 279-309 (2020).
  65. Bilson, J., Sethi, J. K., Byrne, C. D. Non-alcoholic fatty liver disease: A multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proceedings of the Nutrition Society. 81 (2), 146-161 (2022).

Tags

本月在JoVE上,第190期,鸭嘴豆素D,棕榈酸,活性氧,线粒体膜电位,自噬
在棕榈酸诱导的 <em>体外</em> 模型中研究鸭嘴豆素D对非酒精性脂肪肝疾病的保护作用
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Wen, X., Wang, J., Fan, J., Chu, R., More

Wen, X., Wang, J., Fan, J., Chu, R., Chen, Y., Xing, Y., Li, N., Wang, G. Investigating the Protective Effects of Platycodin D on Non-Alcoholic Fatty Liver Disease in a Palmitic Acid-Induced In Vitro Model. J. Vis. Exp. (190), e64816, doi:10.3791/64816 (2022).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter