Craniofacial cartilages develop in close contact with other tissues and are difficult to manipulate in live animals. We are using electroporation to deliver molecular tools during growth of the craniofacial skeleton while bypassing early embryonic effects. This approach will allow us to efficiently test candidate molecules in vivo.
Electroporation is an efficient method of delivering DNA and other charged macromolecules into tissues at precise time points and in precise locations. For example, electroporation has been used with great success to study neural and retinal development in Xenopus, chicken and mouse 1-10. However, it is important to note that in all of these studies, investigators were not targeting soft tissues. Because we are interested in craniofacial development, we adapted a method to target facial mesenchyme.
When we searched the literature, we found, to our surprise, very few reports of successful gene transfer into cartilaginous tissue. The majority of these studies were gene therapy studies, such as siRNA or protein delivery into chondrogenic cell lines, or, animal models of arthritis 11-13. In other systems, such as chicken or mouse, electroporation of facial mesenchyme has been challenging (personal communications, Dept of Craniofacial Development, KCL). We hypothesized that electroporation into procartilaginous and cartilaginous tissues in Xenopus might work better. In our studies, we show that gene transfer into the facial cartilages occurs efficiently at early stages (28), when the facial primordium is still comprised of soft tissue prior to cartilage differentiation.
Xenopus is a very accessible vertebrate system for analysis of craniofacial development. Craniofacial structures are more readily visible in Xenopus than in any other vertebrate model, primarily because Xenopus embryos are fertilized externally, allowing analyses of the earliest stages, and facilitating live imaging at single cell resolution, as well as reuse of the mothers 14. Among vertebrate models developing externally, Xenopus is more useful for craniofacial analysis than zebrafish, as Xenopus larvae are larger and easier to dissect, and the developing facial region is more accessible to imaging than the equivalent region in fish. In addition, Xenopus is evolutionarily closer to humans than zebrafish (˜100 million years closer) 15. Finally, at these stages, Xenopus tadpoles are transparent, and concurrent expression of fluorescent proteins or molecules will allow easy visualization of the developing cartilages. We anticipate that this approach will allow us to rapidly and efficiently test candidate molecules in an in vivo model system.
In this video, we have demonstrated the feasibility of electroporation-mediated gene delivery into the facial mesenchyme of Xenopus tadpoles. Using this approach, we can bypass early developmental effects of manipulating gene function allowing us to target specific tissues at later time points. Our studies show that heterogenous populations of craniofacial mesenchymal cells can be affected, allowing us to examine lineage of electroporated cells as well as cell autonomous requirements for proteins of interest. Combined with live imaging, we can use this approach to study gene function, over time, during craniofacial development. This novel method highlights the tractability of Xenopus for the study of organogenesis. We anticipate that this method can be broadly adapted to study morphogenesis and differentiation of other tissues as well.
The authors have nothing to disclose.
We are grateful to Nancy Papalopulu and Boyan Bonev for assistance with Xenopus electroporation. We also thank Marc Dionne for critical reading, Jeremy Green and John Wallingford for helpful discussions and members of the Liu lab for their support. This work was funded by grants from the BBSRC (BB/E013872/1) and the Wellcome Trust (081880/Z/06/Z) to KJL.