Labeling the extracellular domain of a membrane protein with a pH sensitive fluorophore, superecliptic pHluorin (SEP), allows subcellular localization, expression, and trafficking to be determined. Imaging SEP-labeled proteins with total internal reflection fluorescence microscopy (TIRFM) enables the quantification of protein levels in the peripheral ER and plasma membrane.
Understanding membrane protein trafficking, assembly, and expression requires an approach that differentiates between those residing in intracellular organelles and those localized on the plasma membrane. Traditional fluorescence-based measurements lack the capability to distinguish membrane proteins residing in different organelles. Cutting edge methodologies transcend traditional methods by coupling pH-sensitive fluorophores with total internal reflection fluorescence microscopy (TIRFM). TIRF illumination excites the sample up to approximately 150 nm from the glass-sample interface, thus decreasing background, increasing the signal to noise ratio, and enhancing resolution. The excitation volume in TIRFM encompasses the plasma membrane and nearby organelles such as the peripheral ER. Superecliptic pHluorin (SEP) is a pH sensitive version of GFP. Genetically encoding SEP into the extracellular domain of a membrane protein of interest positions the fluorophore on the luminal side of the ER and in the extracellular region of the cell. SEP is fluorescent when the pH is greater than 6, but remains in an off state at lower pH values. Therefore, receptors tagged with SEP fluoresce when residing in the endoplasmic reticulum (ER) or upon insertion in the plasma membrane (PM) but not when confined to a trafficking vesicle or other organelles such as the Golgi. The extracellular pH can be adjusted to dictate the fluorescence of receptors on the plasma membrane. The difference in fluorescence between TIRF images at neutral and acidic extracellular pH for the same cell corresponds to a relative number of receptors on the plasma membrane. This allows a simultaneous measurement of intracellular and plasma membrane resident receptors. Single vesicle insertion events can also be measured when the extracellular pH is neutral, corresponding to a low pH trafficking vesicle fusing with the plasma membrane and transitioning into a fluorescent state. This versatile technique can be exploited to study localization, expression, and trafficking of membrane proteins.
Changes in receptor expression, distribution, and assembly have been connected to a wide variety of diseases, including Alzheimer's disease, Parkinson's disease, cystic fibrosis, and drug addiction1,2,3,4,5. For example, nicotine and other nicotinic ligands influence the trafficking of nicotinic acetylcholine receptors (nAChRs) leading to changes in trafficking, expression, and upregulation1,2,5,6,7,8,9,10. Nicotine increases the total number of assembled nAChRs within a cell, increases trafficking towards the plasma membrane, and alters the assembly of subunits to favor a high sensitivity version of some subtypes. Resolving distinct changes in trafficking, assembly, and expression of receptors in a disease model provides crucial mechanistic details that are essential to define drug targets. An ideal approach would rapidly differentiate between intracellular receptors and those localized on the plasma membrane. This is particularly challenging in cases where a majority of a particular protein resides intracellularly, such as with nAChRs. Since the majority of nAChRs are localized to the endoplasmic reticulum, traditional measurements lack the spatio-temporal resolution necessary to pinpoint localization and trafficking changes along the secretory pathway. Receptor trafficking and expression studies of nAChRs have primarily been conducted using radioligand binding11, biotinylation assays12, western blotting13, or immunoprecipitation techniques12. These depend on the binding specificity of a reporter molecule or fixation of cells and lack the ability to simultaneously distinguish between plasma membrane resident and intracellular receptors. Therefore, studies of ion channel assembly and vesicle dynamics have largely relied on low-throughput electrophysiological techniques14.
Superior spatial and temporal resolution is possible with advances in fluorescence microscopy. Genetically encoded reporter molecules, such as green fluorescent protein (GFP) and its variants, eliminate nonspecific binding issues and increase sensitivity15. A pH sensitive variant of GFP, known as superecliptic pHluorin (SEP), can be used to exploit inherent pH differences between compartments within a cell to determine localization5,7,8,9,16,17,18. SEP fluoresces when the pH is higher than 6, but remains in an off state at lower pH. Therefore, receptors tagged with SEP on their luminal side are detected when present in the endoplasmic reticulum (ER) or upon insertion into the plasma membrane (PM), but not when confined to a trafficking vesicle. Manipulation of the extracellular pH in contact with receptors on the plasma membrane consequently alters the fluorescence and therefore detection of these receptors. If the same cell is sequentially imaged at both a neutral extracellular pH and then a pH lower than 6, the difference between the images is attributed to receptors located on the plasma membrane. This allows a simultaneous measurement of intracellular (peripheral ER) and plasma membrane resident receptors5,7,8,9. Single vesicle insertion events can also be resolved when the extracellular pH is neutral. Once a low pH trafficking vesicle fuses with the plasma membrane, the luminal side of the vesicle is exposed to the neutral extracellular solution, causing a transition detected as a burst of fluorescence7,18,19,20. SEP enables the measurement of receptors localized to the plasma membrane and peripheral endoplasmic reticulum, and provides a means to measure trafficking of receptors between these subcellular regions5,7,18.
To achieve higher resolution at the plasma membrane, a receptor with SEP genetically encoded is imaged by total internal reflection florescence microscopy (TIRFM). This method is particularly useful if the majority of receptors are localized to intracellular regions, since TIRFM increases the visibility of the plasma membrane. TIRFM also enables the resolution of trafficking dynamics of single vesicles carrying SEP-labeled receptors upon insertion into the PM. Total internal reflection occurs at the interface of materials with different refractive indices, such as between a cell and a glass cover-slip21,22. SEP fluoresces when irradiated with 488 nm excitation, which is oriented to achieve total internal reflection at the interface of the glass and cell solution. This produces an evanescent wave that penetrates approximately 150 nm into the sample, only exciting fluorophores within this volume. Only SEP containing receptors in a neutral pH environment within this range of excitation are detected, corresponding to those residing on the plasma membrane or peripheral endoplasmic reticulum. Since detection is limited to excitation by the evanescent wave, background fluorescence from the intracellular region is reduced and the signal to noise ratio is increased21,22. In addition, since radiation does not penetrate the bulk of the cell, photodamage is minimized which allows live cell imaging over the course of time. As a result, TIRFM coupled with genetically encoded SEP provides the high resolution and sensitivity required to measure subcellular localization and trafficking dynamics of membrane receptors along the secretory pathway.
The pH sensitivity of SEP enables receptors residing on the plasma membrane to be distinguished from intracellular receptors in the endoplasmic reticulum, and it can be used to resolve insertion events of receptor-carrying vesicles5,7,8,9,18,19,20. Several techniques including surface biotin…
The authors have nothing to disclose.
This work was supported in part by the National Institute on Drug Abuse T32 DA 016176, National Institute on Drug Abuse DA 038817, and National Institute on Drug Abuse DA 040047.
Reagent/Material | |||
Cell Culture Flasks with Filter Cap, Sterile, Greiner Bio One, 75 cm^2 | VWR | 82050-856 | |
35 mm glass bottom petri dishes, sterile | Cell E&G | GBD00002-200 | |
Poly-D-lysine | vwr | 215017510 | |
Dulbecco Modified Eagle Medium (DMEM), High Glucose | Fisher Scientific | 11-965-084 | |
Opti-MEM I Reduced Serum Medium | Gibco / Fisher Scientific | 31-985-088 | |
Fetal Bovine Serum, Certified, US Origin, Standard (Sterile-Filtered) | Gibco / Fisher Scientific | 16-000-044 | |
TrypLE Express Enzyme (1X), no phenol red | Fisher Scientific | 12604-021 | |
Penicillin-Streptomycin Solution | VWR | 45000-652 | |
Leibovitz's L-15 Medium, no phenol red | Gibco / Fisher Scientific | 21083027 | Optional |
Lipofectamine | Fisher Scientific | 11668030 | Gently mix; Do not vortex |
Sodium chloride | Fisher Scientific | BP358-1 | |
Potassium chloride | Fisher Scientific | P217-10 | |
Magnesium chloride | Fisher Scientific | BP214-500 | |
Calcium chloride | Fisher Scientific | C79-500 | |
HEPES | Fisher Scientific | BP310-500 | |
D-Glucose | Fisher Scientific | D16-1 | |
Objective immersion oil | Olympus | Type F | |
Name | Company | Catalog Number | Comments |
Equipment | |||
Microscope | Olympus | IX81 | |
Camera | Andor | iXon Ultra 897 | |
60x, 1.49 NA oil immersion objective | Olympus | APON 60XOTIRF | |
Motorized stage | Prior | IXPROXY | |
Motorized actuator (stepper motor) | Thorlabs | ZST213 | |
MetaMorph (or other imaging program) | Metamorph | ||
488 nm laser | Market Tech | ||
Single mode fiber | Thorlabs | SM450 | |
Mirrors | Thorlabs | BB1-E01 | |
Dichroic 488 nm LP | Semrock | Di02-R488-25×36 | |
Bandpass filter, 488 nm | Semrock | LL01-488-12.5 | |
Bandpass filter, 525/50 | Semrock | FF03-525/50-25 |