This protocol provides a reliable method to establish humanized mice with both human immune system and liver cells. Dual reconstituted immunodeficient mice achieved via intrasplenic injection of human hepatocytes and CD34+ hematopoietic stem cells are susceptible to human immunodeficiency virus-1 infection and recapitulate liver damage as observed in HIV-infected patients.
Despite the increased life expectancy of patients infected with human immunodeficiency virus-1 (HIV-1), liver disease has emerged as a common cause of their morbidity. The liver immunopathology caused by HIV-1 remains elusive. Small xenograft animal models with human hepatocytes and human immune system can recapitulate the human biology of the disease's pathogenesis. Herein, a protocol is described to establish a dual humanized mouse model through human hepatocytes and CD34+ hematopoietic stem/progenitor cells (HSPCs) transplantation, to study liver immunopathology as observed in HIV-infected patients. To achieve dual reconstitution, male TK-NOG (NOD.Cg-Prkdcscid Il2rgtm1Sug Tg(Alb-TK)7-2/ShiJic) mice are intraperitoneally injected with ganciclovir (GCV) doses to eliminate mouse transgenic liver cells, and with treosulfan for nonmyeloablative conditioning, both of which facilitate human hepatocyte (HEP) engraftment and human immune system (HIS) development. Human albumin (ALB) levels are evaluated for liver engraftment, and the presence of human immune cells in blood detected by flow cytometry confirms the establishment of human immune system. The model developed using the protocol described here resembles multiple components of liver damage from HIV-1 infection. Its establishment could prove to be essential for studies of hepatitis virus co-infection and for the evaluation of antiviral and antiretroviral drugs.
Since the advent of antiretroviral therapy, there has been a substantial decrease in deaths related to HIV-1 monoinfection. However, liver disease has emerged as a common cause of morbidity in HIV-infected patients1,2. Coinfections of hepatitis viruses with HIV-1 infection are more common, accounting for 10% – 30% of HIV-infected persons in the United States3,4,5.
The host-specificity of HIV-1 and hepatitis viruses limits the utility of small animal models to study human-specific infectious diseases or to investigate multiple aspects of HIV-1-associated liver pathogenesis. Immunodeficient mice that permit the engraftment of human cells and/or tissues (termed humanized mouse models) are acceptable animal models for preclinical studies6,7,8. Since the introduction of humanized mice in the early 2000s, multiple preclinical studies of cholestatic human liver toxicity, human-specific pathogens, including HIV-1 and HIV-associated neurocognitive disorders, Epstein Barr virus, hepatitis, and other infectious diseases, have been investigated in these mice6,9,10,11. Multiple mouse models for CD34+ HSPCs and/or human hepatocyte transplantation have long been developed and have improved over time to study the disease pathogenesis of Hepatitis B virus (HBV)-associated liver disease12,13,14. Several models for HSPC and human hepatocyte (HEP) transplantation are based on strains, known as NOG (NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac)8,13, NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ)15, Balb/C-Rag2-/- γc-/- (Rag2tm1.1Flv Il2rgtm1.1Flv/J)12, and fah-/- NOD rag1-/-il2rγnull mouse16. However, each model has its own advantages and limitations; for example, AFC8 dual humanized mice for HEPs and human stem cells (HSCs) on a Balb/C-Rag2-/- γc-/- background enables the successful engraftment of immune cells and HSCs, but there is an absence of an antigen-specific T- and B-cell response in this model12. The major concerns in reconstituting double humanized mice include suboptimal engraftment, a lack of suitable models to support different tissues, mismatched conditions, immune rejection, or graft-versus-host disease (GVHD), and technical difficulties, such as risky manipulations with newborns and high mortality rates due to metabolic abnormalities13.
Although humanized mice have been used for HIV research for many years17,18,19, the use of humanized mice to study liver damage caused by HIV-1 has been limited20. We previously reported the establishment of a dual humanized TK-NOG mouse model and its application in HIV-associated liver disease8. This model shows the robust engraftment of liver and immune cells and recapitulates HIV infection pathogenesis. This discussion presents a detailed protocol, including the most critical steps in the transplantation of human hepatocytes. A description of the HSPCs required for a successful engraftment of HEPs and the establishment of a functional immune system in TK-NOG mice is also presented. The use of these mice to study HIV-associated liver immunopathogenesis is detailed. TK-NOG male mice carrying a liver-specific herpes simplex virus type 1 thymidine kinase (HSV-TK) transgene are used. Mouse liver cells expressing this transgene can easily be ablated after a brief exposure to a nontoxic dose of GCV. Transplanted human liver cells are stably maintained within the mouse liver without exogenous drugs21. The mice are also preconditioned with nonmyeloablative doses of treosulfan to create a niche in the mouse bone marrow for human cells8. Immunodeficient TK-NOG mice are intrasplenically injected with HEPs and multipotent HSPCs. The mice are then regularly monitored for blood and liver reconstitution by blood immunophenotyping and measurements of serum human-albumin levels, respectively. Mice with a successful reconstitution of more than 15% for both human immune cells and HEPs are intraperitoneally injected with HIV-1. The effect of HIV on the liver can be assessed as early as 4 – 5 weeks postinfection. It is critical to note that, because HIV-1 is used, all necessary precautions must be taken while handling the virus and injecting it into mice.
The liver is compromised and damaged in HIV-infected patients24. Experimental small animal models for studying human liver diseases in the presence of HIV-1 is extremely limited, despite the availability of a few cotransplanted animal models with CD34+ HSPCs and hepatocytes7,12,25. In in vitro experiments, hepatocytes are shown to have low-level HIV-1 infection26. Humani…
The authors have nothing to disclose.
This work was supported by the National Institute of Health grant R24OD018546 (to L.Y.P. and S.G.). The authors would like to thank Weizhe Li, Ph.D., for the help in surgical procedures, Amanda Branch Woods, B.S., Yan Cheng for immunohistology, UNMC flow cytometry research facility members Director Phillip Hexley, Ph.D., Victoria B. Smith, B.S., and Samantha Wall, B.S., UNMC advanced microscopy core facility members Janice A. Taylor, B.S., and James R. Talaska, B.S., for the technical support. The authors acknowledge Drs. Mamoru Ito and Hiroshi Suemizu from CIEA for providing TK-NOG mice and Dr. Joachim Baumgart for providing treosulfan. The authors thank Dr. Adrian Koesters, UNMC, for her editorial contribution to the manuscript.
27G1/2" needles | BD biosciences | 305109 | |
30G1/2" needles | BD biosciences | 305106 | |
5 mL polystyrene round-bottom tube 12 x 75 mm style | Corning | 352054 | |
BD 1 mL Tuberculin Syringe Without Needle | BD biosciences | 309659 | |
BD FACS array bioanalyzer | BD Biosciences | For purity check of eluted CD34+ cells | |
BD FACS array software | BD Biosciences | Software to analysis acquired CD34+ cell on FACS array | |
BD FACS lysing solution | BD Biosciences | 349202 | To lyse red blood cells |
BD LSR II | BD Biosciences | Instrument for acquisiton of flow cytometry samples | |
BD Vacutainer Plastic Blood Collection Tube | BD biosciences | BD 367874 | To collect Cord blood |
Bovine Serum Albumin | Sigma-aldrich | A9576 | |
Buprenorphine | Controlled substance and pain-killer | ||
CD14-PE | BD Biosciences | 555398 | Specific to human |
CD19-BV605 | BD Biosciences | 562653 | Specific to human |
CD34 MicroBead Kit, human | Miltenyi Biotec | 130-046-702 | For isoation of CD34+ HSPC |
CD34-PE, human | Miltenyi Biotec | 130-081-002 | Antibody used for purity check of eluted CD34+ cells |
CD3-AF700 | BD Biosciences | 557943 | Specific to human |
CD45-PerCPCy5.5 | BD Biosciences | 564105 | Specific to human |
CD4-APC | BD Biosciences | 555349 | Specific to human |
CD8-BV421 | BD Biosciences | 562428 | Specific to human |
Cell counting slides | Bio-rad | 1450015 | |
ChargeSwitch gDNA Mini Tissue Kit | Thermofisher scientific | CS11204 | for extraction of genomic DNA from ear piece |
Cobas Amplicor system v1.5 | Roche Molecular Diagnostics | bioanalyzer to measure viral load | |
Cotton-tipped applicators | McKesson | 24-106-2S | |
Cytokeratin-18 (CK18) | DAKO | M7010 | Specific to human |
DMSO (Dimethyl sulfoxide) | Sigma-aldrich | D2650-5X5ML | |
Extension set Microbore Slide Clamp(s) Fixed Male Luer Lock. L: 60 in L: 152 cm PV: 0.55 mL Fluid Path Sterile | BD biosciences | 30914 | Attached to dispensing pippet and to load with HSPC and HEP suspesion |
FACS Diva version 6 | BD Biosciences | flow cytometer software required for acqusition of sample | |
Fetal Bovine Serum (FBS) | Gibco | 10438026 | |
FLOWJO analysis software v10.2 |
FLOWJO, LLC | flow cytometry analysis software | |
Ganciclovir | APP Pharmaceuticals, Inc. | 315110 | Prescripition drug |
Greiner MiniCollect EDTA Tubes | Greiner bio-one | 450475 | |
Hepatocytes thawing medium | Triangle Research Labs | MCHT50 | |
Horizon Open Ligating Clip Appliers | Teleflex | 537061 | To hold the ligating clips |
Hospira Sterile Water for Injection | ACE surgical supply co. Inc. | 001-1187 | For dilution of Buprenorphine (pain-killer) |
Human Albumin ELISA Quantitation Set | Bethyl laboratories | E80-129 | For assesing human albumin levels in mouse serum |
Human hepatocyte | Triangle Research Labs | HUCP1 | Cryopreserved human hepatocytes, induction qualified |
Iris Scissors, Straight | Ted Pella, Inc. | 13295 | |
Lancet | MEDIpoint | Goldenrod 5 mm | |
LS columns | Miltenyi Biotec | 130-042-401 | Used to entrap CD34+ microbeads (positive selection) |
Lymphocyte Separation Medium (LSM) | MP Biomedicals | 50494 | For isoation of lymphocytes from peripheral blood |
MACS MultiStand | Miltenyi Biotec | 130-042-303 | holds Qudro MACS seperator and LS columns |
McPherson-Vannas Micro Dissecting Spring Scissors | Roboz Surgical Instrument Co. | RS-5605 | Used to make an incision on skin to expose spleen |
Micro Dissecting Forceps | Roboz Surgical Instrument Co. | RS-5157 | to hold and pull out spleen from peritoneal cavity |
mouse CD45-FITC | BD Biosciences | 553080 | mouse-specific |
PBS (Phosphate Buffered Saline) | Hyclone | SH30256.02 | |
Qudro MACS separator | Miltenyi Biotec | 130-090-976 | holds four LS columns |
RPMI 1640 medium | Gibco | 11875093 | |
StepOne Plus Real Time PCR | Applied Biosystems | Instrument used to genotype | |
Stepper Series Repetitive Dispensing Pipette 1ml | DYMAX CORP | T15469 | Used to dispense HSPC and HEP supension in controlled manner |
Suturevet PGA synthetic absorbale suture | Henry Schein Animal Health | 41178 | Suturing of skin and peritoneum |
TaqMan Gene Expression Master Mix | Thermofisher scientific | 4369016 | |
TC20 automated cell counter | Bio-rad | 1450102 | |
TK-NOG mice | Provided by the Central Institute for Experimental Animals (CIEA, Japan; Drs. Mamoru Ito and Hiroshi Suemizu) | ||
Treosulfan | Medac GmbH | Provided by Dr. Joachim Baumgart (medac GmbH) | |
Trypan Blue | Bio-rad | 1450022 | |
Vannas-type Micro Scissors, Straight, 80mm L | Ted Pella, Inc. | 1346 | Used to make an incision on skin to expose spleen |
Weck hemoclip traditional titanium ligating clips | Esutures | 523700 | To ligate the spleen post-injection |