-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Core
Chemistry
Henderson-Hasselbalch Equation
Henderson-Hasselbalch Equation
JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Henderson-Hasselbalch Equation

16.3: Henderson-Hasselbalch Equation

72,942 Views
02:48 min
September 24, 2020

Overview

The ionization-constant expression for a solution of a weak acid can be written as:

Chemical equilibrium reaction diagram, NH4HS ↔ NH3 + H2S, illustrating dynamic process.

Rearranging to solve for [H3O+] yields:

Static equilibrium, ΣFx=0, ΣFy=0, diagram; illustrating forces in balance, physics education.

Taking the negative logarithm of both sides of this equation gives

Chemical structure diagram of triacylglycerol showing ester linkages and fatty acid chains.

which can be written as

Chromatography process diagram with formulas for Rf calculation.

where pKa is the negative of the logarithm of the ionization constant of the weak acid (pKa = −log Ka). This equation relates the pH, the ionization constant of a weak acid, and the concentrations of the weak conjugate acid-base pair in a buffered solution. Scientists often use this expression, called the Henderson-Hasselbalch equation, to calculate the pH of buffer solutions. It is important to note that the “x is small” assumption must be valid to use this equation.

Lawrence Joseph Henderson and Karl Albert Hasselbalch

Lawrence Joseph Henderson (1878–1942) was an American physician, biochemist and physiologist, to name only a few of his many pursuits. He obtained a medical degree from Harvard and then spent 2 years studying in Strasbourg, then a part of Germany, before returning to take a lecturer position at Harvard. He eventually became a professor at Harvard and worked there his entire life. He discovered that the acid-base balance in human blood is regulated by a buffer system formed by the dissolved carbon dioxide in blood. He wrote an equation in 1908 to describe the carbonic acid-carbonate buffer system in blood. Henderson was broadly knowledgeable; in addition to his important research on the physiology of blood, he also wrote on the adaptations of organisms and their fit with their environments, on sociology and on university education. He also founded the Fatigue Laboratory at the Harvard Business School, which examined human physiology with a specific focus on work in industry, exercise, and nutrition.

In 1916, Karl Albert Hasselbalch (1874–1962), a Danish physician and chemist, shared authorship in a paper with Christian Bohr in 1904 that described the Bohr effect, which showed that the ability of hemoglobin in the blood to bind with oxygen was inversely related to the acidity of the blood and the concentration of carbon dioxide. The pH scale was introduced in 1909 by another Dane, Sørensen, and in 1912, Hasselbalch published measurements of the pH of blood. In 1916, Hasselbalch expressed Henderson’s equation in logarithmic terms, consistent with the logarithmic scale of pH, and thus the Henderson-Hasselbalch equation was born.

This text is adapted from Openstax, Chemistry 2e, Section 14.6: Buffers.

Transcript

The pH of a buffered solution containing a conjugate acid-base pair may be calculated using the Henderson-Hasselbalch equation as an alternative to an ICE table.

The Henderson-Hasselbalch equation is derived from the equilibrium constant expression for Ka.

This expression can be rearranged to determine the hydronium ion concentration. If the negative log of both sides is taken, the negative logarithm of the hydronium ion concentration and the negative logarithm of the acid dissociation constant can be replaced by the pH and the pKa, respectively.

This yields an equation where the pH of a buffer can be calculated by adding the pKa and the log of the equilibrium concentrations of a conjugate base over its weak acid.

These equilibrium values can be replaced by the initial concentrations if the change in the  hydronium ion concentration, x, is less than the 5% of the initial concentrations of both the weak acid and the conjugate base.

The Henderson-Hasselbalch equation also shows the ratio of base to acid needed to prepare a buffer at a specific pH.

Similarly, the pH of a solution containing a weak base and its conjugate acid can be determined using this equation by calculating the pKa of the conjugate acid from the pKb using the formula: pKa plus pKb is equal to fourteen.

The pH of a buffer containing 0.15 molar formic acid and 0.18 molar sodium formate can be determined using either the Henderson-Hasselbalch equation or the Ka for formic acid and the ICE table. However, the Henderson-Hasselbalch equation is a quicker method to calculate the pH when a reaction involves a conjugate acid-base pair and the change in hydronium concentration is small.

The pKa is determined by taking the negative logarithm of the Ka for formic acid, which equals 3.75.

When the initial concentrations of formic acid and formate are plugged into the equation, the pH value for the solution equals 3.83.

This pH value can be used to determine the hydronium ion concentration, 1.5 × 10−4. As this value is less than 5% of 0.15 molar formic acid, the approximations needed to use the Henderson-Hasselbalch equation are valid.

Explore More Videos

Henderson-Hasselbalch EquationBuffered SolutionConjugate Acid-base PairICE TableEquilibrium Constant ExpressionHydronium Ion ConcentrationPHPKaBufferEquilibrium ConcentrationsWeak AcidConjugate BaseRatio Of Base To AcidWeak BasePKbMolar Formic AcidMolar Sodium Formate

Related Videos

Common Ion Effect

03:24

Common Ion Effect

Acid-base and Solubility Equilibria

43.7K Views

Buffers

02:56

Buffers

Acid-base and Solubility Equilibria

169.0K Views

Henderson-Hasselbalch Equation

02:48

Henderson-Hasselbalch Equation

Acid-base and Solubility Equilibria

72.9K Views

Calculating pH Changes in a Buffer Solution

02:45

Calculating pH Changes in a Buffer Solution

Acid-base and Solubility Equilibria

55.5K Views

Buffer Effectiveness

02:19

Buffer Effectiveness

Acid-base and Solubility Equilibria

52.3K Views

Titration Calculations: Strong Acid - Strong Base

02:28

Titration Calculations: Strong Acid - Strong Base

Acid-base and Solubility Equilibria

31.5K Views

Titration Calculations: Weak Acid - Strong Base

03:55

Titration Calculations: Weak Acid - Strong Base

Acid-base and Solubility Equilibria

46.6K Views

Indicators

02:39

Indicators

Acid-base and Solubility Equilibria

52.2K Views

Titration of a Polyprotic Acid

02:08

Titration of a Polyprotic Acid

Acid-base and Solubility Equilibria

99.6K Views

Solubility Equilibria

03:07

Solubility Equilibria

Acid-base and Solubility Equilibria

55.2K Views

Factors Affecting Solubility

04:01

Factors Affecting Solubility

Acid-base and Solubility Equilibria

35.3K Views

Formation of Complex Ions

03:45

Formation of Complex Ions

Acid-base and Solubility Equilibria

24.8K Views

Precipitation of Ions

03:11

Precipitation of Ions

Acid-base and Solubility Equilibria

28.9K Views

Qualitative Analysis

03:46

Qualitative Analysis

Acid-base and Solubility Equilibria

23.1K Views

Acid-Base Titration Curves

02:23

Acid-Base Titration Curves

Acid-base and Solubility Equilibria

134.9K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code