RESEARCH
Peer reviewed scientific video journal
Video encyclopedia of advanced research methods
Visualizing science through experiment videos
EDUCATION
Video textbooks for undergraduate courses
Visual demonstrations of key scientific experiments
BUSINESS
Video textbooks for business education
OTHERS
Interactive video based quizzes for formative assessments
Products
RESEARCH
JoVE Journal
Peer reviewed scientific video journal
JoVE Encyclopedia of Experiments
Video encyclopedia of advanced research methods
EDUCATION
JoVE Core
Video textbooks for undergraduates
JoVE Science Education
Visual demonstrations of key scientific experiments
JoVE Lab Manual
Videos of experiments for undergraduate lab courses
BUSINESS
JoVE Business
Video textbooks for business education
Solutions
Language
English
Menu
Menu
Menu
Menu
Recently, the development of olefin metathesis polymerization advanced the field of polymer synthesis. Simply put, the reorganization of substituents on their double bonds between two olefins in the presence of a catalyst is known as the olefin metathesis reaction. The use of metathesis reaction for polymer synthesis is called olefin metathesis polymerization.
Ruthenium-based Grubbs catalyst is the most commonly used catalyst for olefin metathesis polymerization. Grubbs catalyst consists of a carbon-metal double bond, also known as carbene.
The olefin metathesis reaction follows the reversible mechanism as shown in the figure below:
The general mechanism involves the reaction of Grubbs catalyst with an alkene in a [2+2] cycloaddition giving a four-membered metallacyclobutane intermediate which immediately undergoes a ring-opening reaction in a reverse manner to give back the starting material or by breaking different bonds to form a different carbene or a catalyst and a different alkene product.
The new catalyst undergoes [2+2] cycloaddition with a second alkene to form a new metallacyclobutane, giving the metathesis product and a new carbene complex. This new carbene complex is then ready to attack another molecule of starting material, and the cycle is repeated.
There are several ways the olefin metathesis has been implemented for polymer synthesis. However, ring-opening metathesis polymerization (ROMP) and acyclic diene metathesis (ADMET) are the most widely used for polymerization. ROMP is a chain growth, addition polymerization reaction, whereas ADMET is a step-growth, condensation polymerization reaction.
Typically, the exchange of substituents between two olefins in the presence of a catalyst to form two new olefins is called an olefin metathesis reaction.
The application of the olefin metathesis reaction to synthesize polymers is called olefin metathesis polymerization.
The most commonly used catalyst for olefin metathesis polymerization is the ruthenium‐based Grubbs catalyst, consisting of a carbon–metal double bond. For simplicity, the catalyst is often represented as shown where M is the metal with its ligands.
Generally, olefin metathesis polymerization occurs in two ways: ring-opening metathesis polymerization or ROMP and acyclic diene metathesis or ADMET.
Both of these methods have the advantage of being compatible with olefin monomers over various other functional groups.
The commercially available polymers synthesized by the olefin metathesis polymerization include Vestenamer, used for manufacturing rubber objects, and Norsorex, used as a superabsorbent polymer for oil.
Related Videos
01:00
Synthetic Polymers
3.7K Views
01:24
Synthetic Polymers
3.0K Views
01:01
Synthetic Polymers
3.4K Views
01:10
Synthetic Polymers
4.2K Views
01:14
Synthetic Polymers
3.4K Views
01:21
Synthetic Polymers
3.5K Views
01:26
Synthetic Polymers
2.9K Views
01:10
Synthetic Polymers
2.9K Views
01:09
Synthetic Polymers
3.0K Views
01:17
Synthetic Polymers
2.2K Views
01:20
Synthetic Polymers
2.3K Views
01:04
Synthetic Polymers
2.2K Views
00:57
Synthetic Polymers
2.6K Views
01:17
Synthetic Polymers
3.6K Views
01:03
Synthetic Polymers
4.0K Views
01:08
Synthetic Polymers
2.6K Views
01:20
Synthetic Polymers
2.4K Views
01:13
Synthetic Polymers
2.3K Views
01:16
Synthetic Polymers
2.8K Views
00:53
Synthetic Polymers
2.0K Views