JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You have trial access to videos in this collection until May 31, 2014.

In JoVE (1)

Other Publications (2)

Articles by Georgios Mallas in JoVE

 JoVE Clinical and Translational Medicine

In vivo Near Infrared Fluorescence (NIRF) Intravascular Molecular Imaging of Inflammatory Plaque, a Multimodal Approach to Imaging of Atherosclerosis

1Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 2Institute for Biological and Medical Imaging, Helmholtz Zentrum München und Technische Universität München, 3Department of Electrical and Computer Engineering, Northeastern University


JoVE 2257

We detail a new near-infrared fluorescence (NIRF) catheter for 2-dimensional intravascular molecular imaging of plaque biology in vivo. The NIRF catheter can visualize key biological processes such as inflammation by reporting on the presence of plaque-avid activatable and targeted NIR fluorochromes. The catheter utilizes clinical engineering and power requirements and is targeted for application in human coronary arteries. The following research study describes a multimodal imaging strategy that utilizes a novel in vivo intravascular NIRF catheter to image and quantify inflammatory plaque in proteolytically active inflamed rabbit atheromata.

Other articles by Georgios Mallas on PubMed

Two-dimensional Intravascular Near-infrared Fluorescence Molecular Imaging of Inflammation in Atherosclerosis and Stent-induced Vascular Injury

This study sought to develop a 2-dimensional (2D) intravascular near-infrared fluorescence (NIRF) imaging strategy for investigation of arterial inflammation in coronary-sized vessels.

Progress on Multimodal Molecular / Anatomical Intravascular Imaging of Coronary Vessels Combining Near Infrared Fluorescence and Ultrasound

The use of intravascular imaging modalities for the detection and assessment of atherosclerotic plaque is becoming increasingly useful. Current clinical invasive modalities assess the presence of plaque using anatomical information and include Intravascular Ultrasound (IVUS) and Optical Coherence Tomography (OCT). However, such modalities cannot take into account underlying functional biological information, which can however be revealed with the use of molecular imaging. Consequently, intravascular molecular imaging is emerging as a powerful approach. We have developed such a Near-Infrared Fluorescence (NIRF) imaging system and showcased, in both phantom and in-vivo (rabbit) experiments, its potential to successfully detect inflamed atherosclerotic plaques, using appropriate fluorescent probes. Here, we discuss some limitations of the current system and suggest the combined use of the NIRF and IVUS imaging systems as a means for more accurate assessment of atherosclerotic plaque. We include some results and models that showcase the potential power of this kind of hybrid imaging.

Waiting
simple hit counter