Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Extraembryonic Membranes: The thin layers of tissue that surround the developing embryo. There are four extra-embryonic membranes commonly found in Vertebrates, such as Reptiles; Birds; and Mammals. They are the Yolk sac, the Allantois, the Amnion, and the Chorion. These membranes provide protection and means to transport nutrients and wastes.
 Science Education: Essentials of Biology 2

Development of the Chick

JoVE Science Education

The chicken embryo (Gallus gallus domesticus) provides an economical and accessible model for developmental biology research. Chicks develop rapidly and are amenable to genetic and physiological manipulations, allowing researchers to investigate developmental pathways down to the cell and molecular levels.

This video review of chick development begins by describing the process of egg fertilization and formation within the chicken reproductive tract. Next, the most commonly used chick staging nomenclature, the Hamburger Hamilton staging series, is introduced. Major events in chick development are then outlined, including the dramatic cellular movements known as gastrulation that form the three major cell layers: The ectoderm, mesoderm, and endoderm. Cells from these layers go on to generate all the tissues within the organism, as well as extraembryonic membranes, which are necessary for the transport of gases, nutrients, and wastes within the eggshell. To conclude the discussion, some exciting techniques will be presented as strategies for studying chick development in greater detail.

 Science Education: Essentials of Biology 2

An Introduction to the Chick: Gallus gallus domesticus

JoVE Science Education

The chicken embryo (Gallus gallus domesticus) is an extremely valuable model organism for research in developmental biology, in part because most of their development takes place within an egg that is incubated outside of the mother. As a result, early developmental stages can be accessed, visualized and manipulated by simply creating a small hole in the eggshell. Since billions of chickens are raised worldwide for meat and egg production, scientists can easily and economically acquire large numbers of fertilized eggs throughout the year. Furthermore, chickens share significant genetic conservation with humans, so the genetic mechanisms that have been found to regulate chicken development are also relevant to our own biology. This video focuses on introducing the domesticated chicken as a scientific model. The discussion begins with a review of chicken phylogeny, revealing the features that make them amniotes, like other birds, reptiles, and mammals. Highlights from the millennia of chicken research will be presented, ranging from Aristotle’s postulates about the function of extra-embryonic membranes to more recent, Nobel-prize winning discoveries in neuroscience. Additionally, some current examples of studies performed in chicken embryos will be provided, such as in vivo tracking of cell movements during development and the recruitment of

 JoVE Neuroscience

Dissection and Culture of Commissural Neurons from Embryonic Spinal Cord

1Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal, 2Division of Experimental Medicine and Program in Neuroengineering, McGill University, 3Program in Neuroengineering, McGill University, 4Montreal Neurological Institute, 5Department of Anatomy and Cell Biology, McGill University, 6Department of Biology, McGill University, 7Department of Medicine, Universite de Montreal - University of Montreal


JoVE 1773

 Science Education: Essentials of Biology 2

Basic Chick Care and Maintenance

JoVE Science Education

Chicks (Gallus gallus domesticus) are a valuable research tool, not only for studying important concepts in vertebrate development, neuroscience, and tumor biology, but also as an efficient system in which to propagate viruses. Although eggs can be purchased from external suppliers and working with chicks requires very little specialized equipment, an understanding of proper handling procedures is required for normal embryo development. This video will provide an overview of egg handling principles, including an explanation of the incubation parameters that can profoundly impact development: temperature, humidity, and egg rotation. Most experiments that use chicken eggs require access to the embryo within the shell, which is achieved by cutting a small, resealable hole, or “window.” This process is described in step-by-step detail, along with several other techniques essential for working with chicks, such as candling and India ink injection. Finally, the video will review some practical applications of these basic techniques in advanced scientific research.

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Biology

Reconstitution of a Transmembrane Protein, the Voltage-gated Ion Channel, KvAP, into Giant Unilamellar Vesicles for Microscopy and Patch Clamp Studies

1Institut Curie, Centre de Recherche, CNRS, UMR 168, PhysicoChimie Curie, Université Pierre et Marie Curie, 2Kavli Institute for Brain and Mind, University of California, San Diego, 3Molecular Physiology and Biophysics Section, National Institute for Neurological Disorders and Stroke, National Institute of Health


JoVE 52281

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Preparation of Light-responsive Membranes by a Combined Surface Grafting and Postmodification Process

1Laboratory for Protection and Physiology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 2Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 3Division of Neonatology, University Hospital Zurich


JoVE 51680

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Chemistry

From Constructs to Crystals – Towards Structure Determination of β-barrel Outer Membrane Proteins

1Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, 2National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 3National Institute of General Medical Sciences (NIGMS), National Institutes of Health


JoVE 53245

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Neuroscience

SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy

1Department of Cellular and Molecular Physiology, Yale University School of Medicine, 2Nanobiology Institute, Yale University, 3Department of Molecular Biophysics and Biochemistry, Yale University, 4Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS)


JoVE 54349

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Formation of Biomembrane Microarrays with a Squeegee-based Assembly Method

1Department of Electrical and Computer Engineering, University of Minnesota, 2Department of Biomedical Engineering, University of Minnesota, 3Department of Neurology, Mayo Clinic College of Medicine, 4Department of Immunology, Mayo Clinic College of Medicine


JoVE 51501

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Immunology and Infection

Antibody Binding Specificity for Kappa (Vκ) Light Chain-containing Human (IgM) Antibodies: Polysialic Acid (PSA) Attached to NCAM as a Case Study

1Department of Neurology, Mayo Clinic, 2Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 3Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 4Division of Neonatal Medicine, Mayo Clinic, 5Department of Pediatric and Adolescent Medicine, Mayo Clinic


JoVE 54139

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Developmental Biology

Imaging Subcellular Structures in the Living Zebrafish Embryo

1Institute of Neuronal Cell Biology, Technische Universität München, 2Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3Faculty of Biology, Ludwig-Maximilians-Universität-München, 4Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-Universität-München, 5German Center for Neurodegenerative Diseases, 6Laboratory of Brain Development and Repair, The Rockefeller University


JoVE 53456

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
12345678917
More Results...
Waiting
simple hit counter