Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

خلفية رفض الإسفار في الرنين وMicrospectroscopy رامان العفوي

Published: May 18, 2011 doi: 10.3791/2592
* These authors contributed equally

Materials

Name Company Catalog Number Comments
Lenses Thorlabs Inc. Various All lenses coated to have maximum transmission losses of 1% each
Tunable Ti:Sapph laser Coherent Inc. Chameleon 30 nJ, 200 fs, 80 MHz
40X oil immersion objective Olympus Corporation UApo/340 NA = 1.35
Inverted microscope Olympus Corporation IX-71 Modified to remove all lenses in side port
Half wave plate Thorlabs Inc. AHWP05M-600
Glan-Thompson polarizer Thorlabs Inc. GTH10M ∼10% transmission loss
Spectrometer Princeton Instruments/Acton SP2300i
CCD Princeton Instruments/Acton Pixis 100B
Mathmatical software Mathworks MATLAB version 2008a
Faraday isolator EOT BB8-5I
Piezo-electric mirror Newport Corp. AG-M100
BBO crystal CASIX custom 1 mm thickness
Bandpass filter 1 Andover 008FC14 808 ± 0.4 nm
Dichroic mirror Semrock FF662-FDI01 band edge at 662 nm
Long-pass filter Semrock BLP01-405R band edge at 417 nm
Bandpass filter 2 Semrock FF02-447/60 417-447 nm
CS2 Sigma-Aldrich 335266 99% purity
Coumarin 30 Sigma-Aldrich 546127 99% purity
Immersion oil Cargill Labs 16242 Type DF

DOWNLOAD MATERIALS LIST

References

  1. Savitzky, A., Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. 36, 1627-1639 (1964).
  2. Lieber, C. A., Mahadevan-Jansen, A. Automated method for subtraction of fluorescence from biological Raman spectra. Applied Spectroscopy. 57, 1363-1367 (2003).
  3. Gniadecka, M. Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue. Journal of Investiga-tive Dermatology. 122, 443-449 (2004).
  4. Lieber, C. A., Majumder, S. K., Billheimer, D., Ellis, D. L., Mahadevan-Jansen, A. Raman microspectroscopy for skin cancer detection in vitro. Journal of Biomedical Optics. 13, 024013-024013 (2008).
  5. Chen, K., Qin, Y., Zheng, F., Sun, M., Shi, D. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells. Optics Letters. 31, 2015-2017 (2006).
  6. Chan, J. W. Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. Analytical Chemistry. 80, 2180-2187 (2008).
  7. Zhu, Q. Y., Quivey, R. G., Berger, A. J. Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy. Journal of Biomedical Optics. 9, 1182-1186 (2004).
  8. Rösch, P. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations. Applied and Environmental Microbiology. 71, 1626-1637 (2005).
  9. Moritz, T. J. Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment. Biophysical Journal. 98, 742a-742a (2010).
  10. Dehring, K. A. Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy. Applied Spectroscopy. 60, 1134-1141 (2006).
  11. Berger, A. J., Koo, T. W., Itzkan, I., Horowitz, G., Feld, M. S. Multicomponent blood analysis by near-infrared Raman spectroscopy. Applied Optics. 38, 2916-2926 (1999).
  12. Qi, D., Berger, A. J. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. Applied Spectroscopy. 46, 1726-1734 (2007).
  13. Beier, B. D., Berger, A. J. Method for automated background subtraction from Raman spectra containing known contaminants. The Analyst. 134, 1198-1202 (2009).
  14. De Luca, A. C., Mazilu, M., Riches, A., Herrington, C. S., Dholakia, K. Online fluorescence suppression in modulated Raman spectroscopy. Analytical Chemistry. 82, 738-745 (2010).
  15. Evans, C. L. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America. 102, 16807-16812 (2005).
  16. Jones, W. J., Stoiche, Inverse raman spectra: Induced absorption at optical frequencies. Physical Review Letters. 13, 657-659 (1964).
  17. Freudiger, Label-Free et Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science. 322, 1857-1861 (2008).
  18. Cui, M., Bachler, B. R., Ogilvie, J. P. Comparing coherent and spontaneous Raman scattering under biological imaging conditions. Optics Letters. 34, 773-775 (2009).
  19. Matousek, P., Towrie, M., Stanley, A., Parker, A. W. Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating. Applied Spectroscopy. 53, 1485-1489 (1999).
  20. Matousek, P. Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate. Journal of Raman Spectroscopy. 32, 983-988 (2001).
  21. Knorr, F., Smith, Z. J., Wachsmann-Hogiu, S. Development of a time-gated system for Raman spectroscopy of biological samples. Optics Express. 18, 20049-20058 (2010).
خلفية رفض الإسفار في الرنين وMicrospectroscopy رامان العفوي
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Smith, Z. J., Knorr, F., Pagba, C.More

Smith, Z. J., Knorr, F., Pagba, C. V., Wachsmann-Hogiu, S. Rejection of Fluorescence Background in Resonance and Spontaneous Raman Microspectroscopy. J. Vis. Exp. (51), e2592, doi:10.3791/2592 (2011).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter