Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Environment

Pentosan के लिए एक उपंयास विधि जूट बायोमास में मौजूद विश्लेषण और चीनी मोनोमर अम्लीय ईओण तरल का उपयोग कर में अपने रूपांतरण

Published: June 1, 2018 doi: 10.3791/57613

Summary

हम एक अक्षय गैर-खाद्य lignocellulosic बायोमास से (यानी, जूट) Brønsted अम्लीय ईओण तरल पदार्थ (जमानत) के रूप में पानी में उत्प्रेरक की उपस्थिति के साथ C5 शर्करा (xylose और arabinose) के संश्लेषण के लिए एक प्रोटोकॉल प्रस्तुत करते हैं । जमानतों उत्प्रेरक पारंपरिक खनिज एसिड उत्प्रेरक (एच2तो4 और एचसीएल) की तुलना में बेहतर उत्प्रेरक प्रदर्शन का प्रदर्शन किया ।

Abstract

हाल ही में, ईओण तरल पदार्थ (आईएलएस) बायोमास valorization के लिए मूल्यवान रसायनों में इस तरह के थर्मल स्थिरता, कम वाष्प दबाव, गैर वायुम, उच्च गर्मी क्षमता, और स्वरित्र घुलनशीलता और अंलता के रूप में उनके उल्लेखनीय गुणों की वजह से उपयोग किया जाता है । यहाँ, हम Brønsted अम्लीय 1-मिथाइल-3-(3-sulfopropyl)-imidazolium हाइड्रोजन सल्फेट आईएल की एक उत्प्रेरक राशि का उपयोग करके एक पॉट प्रक्रिया में जूट बायोमास में मौजूद pentosan से C5 शर्करा (xylose और arabinose) के संश्लेषण के लिए एक विधि का प्रदर्शन. अंलीय आईएल प्रयोगशाला में संश्लेषित और इसकी शुद्धता को समझने के लिए एनएमआर स्पेक्ट्रोस्कोपी तकनीक का उपयोग कर विशेषता है । जमानत के विभिंन गुणों ऐसे एसिड शक्ति, थर्मल और जलतापीय स्थिरता के रूप में मापा जाता है, जो पता चला है कि उत्प्रेरक एक उच्च तापमान (२५० डिग्री सेल्सियस) पर स्थिर है और बहुत उच्च एसिड शक्ति (एचo १.५७) के पास । अंलीय आईएल शर्करा और furfural में pentosan के ९०% से अधिक धर्मांतरित । अतः इस अध्ययन में प्रस्तुत पद्धति को अन्य प्रकार के lignocellulosic बायोमास में pentosan एकाग्रता के मूल्यांकन के लिए भी नियोजित किया जा सकता है.

Introduction

बायोमास एक अक्षय ऊर्जा और रासायनिक स्रोत के रूप में महान क्षमता है, क्योंकि यह टिकाऊ है, सस्ती है, और समान रूप से जीवाश्म संसाधनों के विपरीत वितरित, जो यह होनहार उंमीदवारों की जगह के लिए जीवाश्म टाक से एक है । lignocellulosic बायोमास का अनुमानित उत्पादन प्रति वर्ष1, १४६,०००,०००,००० मीट्रिक टन है । lignocellulosic बायोमास मुख्य रूप से lignin, फाइबर, और hemicellulose के अपने तीन प्रमुख घटकों के रूप में शामिल है । Lignin एक खुशबूदार बहुलक phenylpropanoid इकाइयों से बनाया गया है; दूसरी ओर, फाइबर और hemicellulose lignocellulosic बायोमास के polysaccharide भागों हैं । फाइबर β (1 → 4) glycosidic लिंकेज से जुड़े ग्लूकोज इकाइयों से बना है, जबकि hemicellulose C5 शर्करा, सी 6 शर्करा, और चीनी एसिड β (1 → 4), β (1 → 3) और β (1 → 6) glycosidic बांडों2,3द्वारा एक साथ जुड़ा हुआ है से बना है । विभिंन lignocellulosic बायोमास (विनर्माण, चावल भूसी, गेहूं का भूसा, आदि) के साथ-साथ, जूट lignocellulose बायोमास का उत्पादन भी बहुत बड़ी मात्रा (सीए. ९८% में २०१४) एशिया में विश्व में कुल जूट उत्पादन की तुलना में होता है । भारत जूट बायोमास के १.९६ x 106 मीट्रिक टन का उत्पादन करता है जबकि बांग्लादेश दुनिया में जूट बायोमास के कुल उत्पादन की तुलना में जूट बायोमास का १.३४ x 106 मीट्रिक टन (३.३९ x 106 मीट्रिक टन) २०१४4में उत्पादन करता है. इस गैर खाद्य बायोमास के उपयोग के भोजन की मांग के साथ संघर्ष नहीं होगा । इसलिए, यह synthesizing के लिए एक शेयर के रूप में उपयोग करने के लिए लाभकारी है मूल्य वर्धित रसायन (xylose, arabinose, furfural, 5-hydroxymethylfurfural (HMF), आदि) । अमेरिका के ऊर्जा विभाग के अनुसार, furfural और HMF शीर्ष 30 इमारत ब्लॉक के कुछ के रूप में बायोमास5से व्युत्पंन रसायन माना जाता है । Furfural xylose से या सीधे hemicellulose से प्राप्त की है और कई महत्वपूर्ण रसायनों में परिवर्तित किया जा सकता है । Furfuryl अल्कोहल, मिथाइल फ्रान, और tetrahydrofuran furfural6से प्राप्त महत्वपूर्ण रसायन हैं । इसलिए, lignocellulosic बायोमास का रूपांतरण जैसे कि C5 शर्करा और अन्य महत्वपूर्ण रसायनों में जूट बायोमास के रूप में एक महत्वपूर्ण विषय है.

व्यापक रिपोर्टों के मूल्य में lignocellulosic बायोमास के रूपांतरण के लिए विभिंन उत्प्रेरक तरीकों पर उपलब्ध है रसायन जोड़ा । खनिज एसिड (एचसीएल और एच2तो4) और विषम उत्प्रेरक (Amberlyst, HMOR, HUSY, SAPO-४४, आदि) में hemicellulose और lignocellulosic बायोमास के रूपांतरण के लिए काफी इस्तेमाल किया गया शर्करा (pentose और hexose शर्करा) और furans (furfural और HMF)7,8. खनिज अम्ल का पुनर्प्रयोज्य और corrosiveness एक प्रमुख मुद्दा है. हालांकि, ठोस एसिड उत्प्रेरक के साथ, उच्च तापमान और दबाव की आवश्यकता है क्योंकि प्रतिक्रिया उत्प्रेरक की सतह पर होता है । इन मुद्दों पर काबू पाने के लिए, हाल ही में आईएलएस एक उत्प्रेरक या विलायक9,10,11,12,13,14के रूप में बायोमास के valorization के लिए सूचित कर रहे हैं । एक विलायक के रूप में आईएल का उपयोग अपनी उच्च लागत और आईएलएस के कम वाष्प दबाव है कि उत्पाद जुदाई में कठिनाई पैदा करता है की वजह से एक बेहतर तरीका नहीं है । इसलिए, यह एक उत्प्रेरक (छोटी मात्रा में) के रूप में एक पानी विलायक प्रणाली में बायोमास रूपांतरण मूल्य के लिए रसायनों का उपयोग करने के लिए õ IL आवश्यक है ।

यहां, हम किसी भी उपचार के बिना चीनी मोनोमर में जूट बायोमास में वर्तमान pentosan के प्रत्यक्ष रूपांतरण के लिए उत्प्रेरक के रूप में imidazolium हाइड्रोजन सल्फेट अम्लीय आईएल 1-मिथाइल-3-(3-sulfopropyl) का उपयोग करने के लिए एक विधि प्रस्तुत करते हैं । सामांयतः, आईएलएस lignocellulosic बायोमास10,15,16,17 जबकि आईएलएस की बहुत बड़ी मात्रा में बायोमास के इलाज के लिए प्रयोग किया जाता है के उपचार के लिए सूचित कर रहे हैं । इसलिए, यह हमेशा के लिए उत्प्रेरक के रूप में आईएल का उपयोग करें और किसी भी अतिरिक्त उपचार के बिना रसायनों में lignocellulosic बायोमास परिवर्तित लाभप्रद है । इसके अलावा, वर्तमान काम में, lignin एकाग्रता जूट बायोमास में प्रस्तुत Klason विधि है जो विभिंन खुशबूदार मोनोमर में परिवर्तित किया जा सकता है का उपयोग कर की गणना की है18

Subscription Required. Please recommend JoVE to your librarian.

Protocol

पेश काम में इस्तेमाल होने वाले कई केमिकल्स विषैले और यलो होते हैं । आईएल और बायोमास प्रसंस्करण के संश्लेषण प्रदर्शन करते समय सभी उचित सुरक्षा प्रथाओं का उपयोग करें ।

1. अम्लीय आईएल की तैयारी

  1. जोड़ें 1, 3-प्रोपेन sultone के ७.६२५ mmol एक ५० मिलीलीटर गोल नीचे कुप्पी में और फिर एक रबर पट के साथ कुप्पी बंद करें ।
  2. 1 के ७.६२५ mmol जोड़ें-methylimidazole 1, 3 के ७.६२५ mmol में-propanesultone धीरे (10 मिनट) में 0 ° c एक सिरिंज का उपयोग (1 एमएल).
  3. 1 के पूर्ण इसके अलावा-methylimidazole और 1, 3-propanesultone, सूखी टोल्यूनि के 15 मिलीलीटर जोड़ने और १२० डिग्री सेल्सियस पर 16 घंटे के लिए मिश्रण भाटा ठोस zwitterion पाने के लिए ।
  4. छानने का प्रयोग टोल्यूनि से zwitterion अलग और फिर टोल्यूनि के ४० मिलीलीटर के साथ zwitterion धो लो । zwitterion सुखाने के लिए, ८० डिग्री सेल्सियस के लिए ओवन तापमान सेट । एक बार ओवन तापमान ८० ° c तक पहुंच जाता है, 4 घंटे के लिए ओवन में नमूना रखने के लिए और फिर अगले चरण में सूखे zwitterion का उपयोग करें ।
  5. एक १,००० µ l micropipette का उपयोग कर zwitterion (zwitterion और सल्फर एसिड के बराबर तिल) युक्त गोल नीचे कुप्पी में सल्फर एसिड जोड़ें । फिर एक भाटा संघनित्र को गोल नीचे कुप्पी कनेक्ट । गर्मी और ११० डिग्री सेल्सियस पर मिश्रण हलचल 12 एच के लिए वांछित आईएल पाने के लिए ।
    नोट: सल्फर एसिड और zwitterion के बीच की प्रतिक्रिया किसी भी विलायक के बिना किया जाता है ।
  6. अंलीय आईएल के संश्लेषण के बाद, यह 1एच और 13सी एनएमआर स्पेक्ट्रोस्कोपी का उपयोग कर विशेषताएं ।

2. Hammett अम्लता का निर्धारण (एच)

  1. एक 1 l volumetric कुप्पी में p-nitroaniline संकेतक के 10 मिलीग्राम जोड़ें और फिर आसुत जल जोड़ने के लिए एक 1 एल समाधान बनाने के लिए । 2 मिनट के लिए हाथ से अच्छी तरह से समाधान शेक और 1 के लिए समाधान छोड़ने के लिए पानी में पी-nitroaniline मिश्रण (खाली समाधान) ।
  2. (नमूना समाधान) मिश्रण के लिए हाथ से समाधान मिलाने के लिए पी-nitroaniline सूचक समाधान की ५० मिलीलीटर के लिए2तो4/acidic आईएल), एसिड उत्प्रेरक के एच+ आयन के १.५९ mmol जोड़ें ।
    नोट वर्तमान काम में प्रयुक्त सभी अम्ल उत्प्रेरक (एचसीएल, एच2सू4, और अम्लीय आईएल) Hammett अम्लता (एच) के निर्धारण के लिए ५० मिलीलीटर संकेतक समाधान (तालिका 1) में व्यक्तिगत रूप से जुड़ जाते हैं ।
  3. रिक्त समाधान (p-nitroaniline समाधान) और नमूना समाधान (उत्प्रेरक युक्त p-nitroaniline समाधान) के यूवी मापन को निष्पादित करें और p-nitroaniline के Amax का निर्धारण करते हैं ।
  4. अंत में unprotonated के दाढ़ सांद्रता की गणना [I] और protonated [IH+] संकेतक समाधान के Amax मूल्य का उपयोग कर p-nitroaniline और नमूना समाधान । फिर2 नीचे समीकरण का उपयोग कर Ho परिकलित करें
    Equation 1    समीकरण 1
    जहां पीके (i)वायु -जल में p-nitroaniline संकेतक का pka है (pKa = ०.९९), और [i] और [IH+] क्रमशः unprotonated और protonated संकेतक समाधानों की दाढ़ सांद्रता हैं ।

3. जूट बायोमास का विश्लेषण

  1. pentosan का विश्लेषण
    नोट: जूट बायोमास ओवन में 16 एच के लिए १०५ डिग्री सेल्सियस पर सूख गया है ।
    1. ओवन के 3 जी जोड़ें एक 1 एल दौर नीचे कुप्पी में जूट बायोमास सूख, और फिर इसे में ३.८५ एन एचसीएल समाधान की १०० मिलीलीटर जोड़ें ।
    2. आसवन उपकरण के लिए कुप्पी कनेक्ट और सरगर्मी और हीटिंग शुरू इतना है कि समाधान उबलते शुरू होता है ।
    3. जूट बायोमास और एचसीएल सॉल्यूशन युक्त गोल नीचे कुप्पी के लिए एक कीप का उपयोग कर ३.८५ एन एचसीएल dropwise की २५० मिलीलीटर जोड़ें ।
    4. ३.८५ N HCl समाधान dropwise जोड़कर आसवन के दौरान गोल नीचे कुप्पी में एक निरंतर मात्रा (१०० मिलीलीटर) बनाए रखें ।
    5. जब २२० मिलीलीटर आसुत संग्रहीत किया जाता है, तो प्रयोग रोकें । फिर आसुत पानी के साथ ५०० मिलीलीटर के लिए एकत्र आसुत पतला ।
    6. यूवी दिखाई स्पेक्ट्रोमीटर का उपयोग नमूना विश्लेषण और २८० एनएम पर अवशोषक रिकॉर्ड.
    7. Pentosan% का निर्धारण निंनलिखित सूत्र के अनुसार अवशोषण और कमजोर पड़ने मूल्य का उपयोग:
      Equation 2    समीकरण 2
      नोट: इस विधि pentosan विश्लेषण9,19के लिए लुगदी और कागज उद्योग (TAPPI) विधि के तकनीकी एसोसिएशन कहा जाता है । प्रयोग को दो से तीन बार दोहराएं और pentosan% का औसत मान लें । यदि आवश्यक हो तो एकत्र आसुत को इष्टतम सीमा तक अवशोषित करने के लिए पतला करें ।
  2. lignin का विश्लेषण
    नोट: lignin विश्लेषण के लिए उपयोग करने से पहले जूट बायोमास में मौजूद नमी को हटा दें । नमी को दूर करने के लिए 16 एच के लिए १०५ डिग्री सेल्सियस पर एक ओवन में जूट बायोमास रखें ।
    1. एक ५० मिलीलीटर की शीशी में जूट बायोमास के 1 ग्राम जोड़ें, और फिर जूट बायोमास युक्त शीशी में ७२ wt% H2तो4 की 15 मिलीलीटर जोड़ें । 2 एच के लिए 30 डिग्री सेल्सियस पर सरगर्मी सुविधा के साथ एक गर्म थाली का उपयोग कर मिश्रण हिलाओ ।
    2. एक 1 L गोल नीचे कुप्पी में आसुत जल की १५० मिलीलीटर जोड़ें और पच बायोमास नमूने (शीशी में मौजूद) को कुप्पी तक हस्तांतरित करें ।
    3. पानी की १९५ मिलीलीटर के साथ शीशी धो और एक 1 एल दौर नीचे कुप्पी युक्त बायोमास में धोया तरल हस्तांतरण ।
    4. भाटा 4 एच के लिए समाधान और फिर कमरे के तापमान के लिए गोल नीचे कुप्पी शांत । अघुलनशील lignin और राख के नीचे बसने के लिए 12 घंटे प्रतीक्षा करें ।
    5. राख के साथ अघुलनशील lignin प्राप्त करने के लिए एक G2 क्रूसिबल का उपयोग कर समाधान फ़िल्टर. फिर इसे अम्ल-मुक्त बनाने के लिए गरम पानी के १५० मिलीलीटर के साथ अघुलनशील सॉलिड को धो लें ।
    6. सूखी ठोस (lignin + ऐश) पर ६० ° c के लिए 16 ज ओवन में और आगे यह सूखी १०५ ° c के लिए 1 h ओवन में ।
    7. सैंपल को desiccator में रखें और जब सैंपल ठंडा हो जाए तब वजन उठाएं । इस अवस्था में प्राप्त lignin में राख होते हैं और अतएव इसे correction lignin कहा जाता है ।
    8. हवा की उपस्थिति में 5 ज के लिए ६५० ° c पर प्राप्त नमूना हीटिंग द्वारा ऐश सुधार करते हैं । नीचे दिए गए सूत्र का उपयोग करके ऐश सुधार निर्धारित करें:
      Equation 3    समीकरण 3

4. शर्करा में जूट बायोमास से Pentosan का रूपांतरण

  1. एक उच्च दबाव और उच्च तापमान बैच रिएक्टर (१६० एमएल एक प्रकार रिएक्टर) के लिए जूट बायोमास सूखे ओवन के 2 जी जोड़ें । अंलीय आईएल के ०.२४ जी के साथ साथ पानी की ६० मिलीलीटर जोड़ें और १६० डिग्री सेल्सियस के लिए तापमान में वृद्धि ।
  2. २०० rpm को सरगर्मी गति सेट जबकि रिएक्टर १६० डिग्री सेल्सियस तक हीटिंग है । एक बार १६० डिग्री सेल्सियस तापमान तक पहुंच गया है, सरगर्मी गति को बढ़ाने के लिए ६०० rpm ।
  3. 1 ज के लिए प्रतिक्रिया जारी रखें । फिर, २०० rpm को क्रियाशीलता की गति घटाएं और हीटिंग बंद करो ।
  4. रिएक्टर को कमरे के तापमान को ठंडा करने की अनुमति दें । चमचे बंद करो, रिएक्टर खोलें, और प्रतिक्रिया मिश्रण से ठोस अलग । HPLC का उपयोग करते हुए प्रतिक्रिया मिश्रण का विश्लेषण करें ।

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

pentosan और बायोमास से बरामद lignin की सही मात्रा lignocellulosic बायोमास के प्रकार पर निर्भर करता है । विभिंन स्थानों से एकत्र lignocellulosic बायोमास के समान प्रकार pentosan और lignin के विभिंन एकाग्रता हो सकता है । इस अध्ययन में प्रयुक्त जूट बायोमास में २० wt% pentosan और १४ wt% lignin हैं.

चित्रा 1 खनिज एसिड की उत्प्रेरक गतिविधि की तुलना से पता चलता है (एच2तो4 और एचसीएल) और अंलीय आईएल C5 शर्करा में जूट बायोमास के रूपांतरण के लिए । प्रतिक्रियाओं को पानी में १६० ° c (1 एच) में किया गया एसिड उत्प्रेरक की एक ही एसिड राशि का उपयोग (यानी, एच+के १.५९ mmol) । गैर अंलीय आईएल और अंलीय आईएल एक समान दाढ़ एकाग्रता (०.७९ mmol) में इस्तेमाल किया जाता है । उत्प्रेरक गतिविधि आगे किसी भी Brønsted अंलता (1-butyl-3-methylimidazolium क्लोराइड) के बिना एक आईएल के साथ तुलना में है ।

चित्रा 2 इस अध्ययन में इस्तेमाल किया अंलीय आईएल के 1एच और 13सी एनएमआर लक्षण वर्णन करता है । एनएमआर (1एच और 13सी) अंलीय आईएल के स्पेक्ट्रा एसिड आईएल के अलावा कोई अतिरिक्त चोटियों से पता चलता है; यह पुष्टि करता है कि अंलीय आईएल संश्लेषित शुद्ध है । चित्रा 3 lignin जुदाई से पहले जूट बायोमास के XRD से पता चलता है और जूट बायोमास से अलग lignin के XRD.

तालिका 1 सभी उत्प्रेरक का Hammett अंलता समारोह (एच) विश्लेषण प्रस्तुत करता है । विश्लेषण एसिड शक्ति के बारे में जानकारी प्रदान करता है कि p-nitroaniline संकेतक का उपयोग किया गया था ।

Figure 1
चित्र 1: जूट बायोमास में मौजूद pentosan की C5 शर्करा और furfural के लिए रूपांतरण । प्रतिक्रिया स्थिति: जूट बायोमास 2 जी, उत्प्रेरक १.५९ एच के mmol+ (आईएल और अंलीय आईएल एक ही तिल यानी, ०.७९ mmol), पानी की ६० मिलीलीटर, १६० ° c, 1 एच के साथ प्रयोग किया जाता है कृपया यहां क्लिक करें इस आंकड़े का एक बड़ा संस्करण को देखने के लिए ।

Figure 2
चित्रा 2: अम्लीय आईएल के 1एच और 13सी एनएमआर (1-मिथाइल-3-(3-sulfopropyl)-imidazolium हाइड्रोजन सल्फेट) । कृपया यहां क्लिक करें इस आंकड़े का एक बड़ा संस्करण को देखने के लिए ।

Figure 3
चित्र 3: X-Ray विवर्तन. () जूट बायोमास और () XRD से निकाले गए lignin का XRD कृपया यहां क्लिक करें इस आंकड़े का एक बड़ा संस्करण को देखने के लिए ।

उत्प्रेरक एकमैक्स [I]% [IH+]% 0
रिक्त ०.९९१ १०० 0 --
Hcl ०.७५३ ७६ 24 १.५
2सू4 ०.८ ८०.७२ १९.२८ १.६२
अंलीय आईएल ०.७८७ ७९.४ २०.६ १.५७
गैर अंलीय आईएल ०.९९१ १०० -- --

तालिका 1: Hammett अम्लता समारोह (एच) के विभिन्न उत्प्रेरक ों का निर्धारण. सभी माप में, उत्प्रेरक (१.५९ mmol एच+) के साथ मिश्रित है ५० एमएल के पी-nitroaniline समाधान पानी में (10 मिलीग्राम की पी-nitroaniline के 1 L पानी में जोड़ा गया था, pKa के पी-nitroaniline = ०.९९).

Subscription Required. Please recommend JoVE to your librarian.

Discussion

C5 चीनी मोनोमर में जूट बायोमास रूपांतरण में मौजूद pentosan एच2तो4, एचसीएल, और अंलीय आईएल जैसे विभिन्न सजातीय Brønsted अंलीय उत्प्रेरक का उपयोग कर प्रदर्शन किया है । इसके अलावा, अंलीय आईएल के उत्प्रेरक परिणाम (1-butyl-3-methylimidazolium क्लोराइड) अंलता के बिना आईएल के साथ तुलना में था । सभी प्रतिक्रियाओं एक एक प्रकार आटोक्लेव में १६० डिग्री सेल्सियस पर पानी में प्रदर्शन किया गया । अंलीय आईएल का उपयोग सबसे अधिक pentosan रूपांतरण दिखाया जब सजातीय इस काम में इस्तेमाल किया एसिड की तुलना में (खनिज एसिड एच2तो4 और एचसीएल) । परिणामों से संकेत मिलता है कि अम्लीय आईएल उच्च c5 चीनी उपज (७६%) जबकि खनिज एसिड कम पैदावार दिखाने (एचसीएल ४९% और एच2इसलिए4 ५७% c5 चीनी उपज के) शर्करा में pentosan रूपांतरण के लिए दर्शाती है । खनिज अंल उत्प्रेरक और अंलीय आईएल समान अम्ल मात्रा (एच+के १.५९ mmol) पर उपयोग किया जाता है के लिए भिंन उत्प्रेरक अंलता के परिणामों से बचने के । प्रतिक्रिया गैर अंलीय आईएल का उपयोग कर और उत्प्रेरक के बिना किया बहुत कम C5 चीनी पैदावार दिखाया । इसका मतलब यह है कि अंलीय आईएल खनिज एसिड की तुलना में चीनी मोनोमर में pentosan रूपांतरण के लिए बेहतर उत्प्रेरक है । इसके अलावा, IL की अंलता इस प्रतिक्रिया के लिए आवश्यक है क्योंकि गैर अंलीय आईएल के एक समान प्रकार इस प्रतिक्रिया में सक्रिय नहीं है ।

अंलीय आईएल भी lignocellulosic बायोमास में मौजूद pentosan के विश्लेषण के लिए इस्तेमाल किया जा सकता है क्योंकि यह C5 चीनी मोनोमर (७६%) और furfural (12%) की एक बहुत ही उच्च उपज का उत्पादन । यह विधि ३.८५ N HCl और एक लंबी प्रतिक्रिया समय (ca. 24 h) का उपयोग करता है जो खंड ३.१ में वर्णित विधि की तुलना में अधिक श्रेष्ठ है । अम्लीय आईएल का उपयोग कर प्राप्त शर्करा आगे furans में परिवर्तित किया जा सकता है (furfural और विभिन्न फ्रान डेरिवेटिव) या xylitol या arabitol में हाइड्रोजनीकृत. इससे भी महत्वपूर्ण बात, इस विधि का उपयोग कर यह pentosan hydrolysis उत्पादों के रूप में C5 शर्करा को ठीक करने के लिए संभव है. हालांकि, pentosan की वसूली धारा ३.१ में वर्णित विधि से संभव नहीं है क्योंकि pentosan furans में केंद्रित एचसीएल19में नीचा दिखा । आईएलएस कम वाष्प दबाव है और इसलिए, इस प्रक्रिया के दौरान आईएल वाष्पीकरण की एक कमी की संभावना है, जो इस प्रक्रिया को पर्यावरण की दृष्टि से सुरक्षित बनाता है । इसके अलावा एचसीएल की corrosiveness और रिसाइकिलिंग का एचसीएल ट्रीटमेंट20,21के साथ प्रमुख मुद्दा है । दूसरी ओर, pentosan रूपांतरण की प्रक्रिया में अंलीय आईएल की उत्प्रेरक मात्रा का उपयोग पुनर्नवीनीकरण किया जा सकता है ।

Hammett अम्लता (एच) परिणाम से पता चला है कि अंलीय आईएल उच्च एसिड शक्ति है (एच = १.५७) एच2की तुलना में तो4 (एच = १.६२); इसलिए, यह एच2से बेहतर प्रदर्शन तो4 उत्प्रेरक । हालांकि, अम्लीय आईएल एचसीएल की तुलना में कम अम्ल शक्ति है । फिर भी, यह एचसीएल उत्प्रेरक से बेहतर प्रदर्शन करती है क्योंकि यह lignocellulosic बायोमास2में मौजूद polysaccharides के साथ बेहतर आयन-द्विध्रुवीय इंटरेक्शन के लिए लाभकारी है । इसके अलावा, अंलीय आईएल वर्तमान काम में इस्तेमाल किया ३०० डिग्री सेल्सियस तापमान (thermogravimetric विश्लेषण का उपयोग कर विश्लेषण) के नीचे थर्मल स्थिर है, जबकि यह १८० डिग्री सेल्सियस तापमान (०.६ ग्राम अंलीय IL ६० मिलीलीटर पानी में गर्म के लिए १८० ° c के लिए 3 ज) के नीचे स्थिर है2 .

इसके अतिरिक्त, जूट बायोमास से lignin की जुदाई Klason विधि (धारा ३.२) का उपयोग कर बाहर किया जाता है । वर्तमान कार्य में प्रयुक्त जूट बायोमास में १४ wt% lignin हैं. जूट बायोमास से पृथक lignin शुद्ध है और इसमें बहुत कम राख (< 1%), जो आगे खुशबूदार मोनोमर में परिवर्तित हो सकती है ।

pentosan और lignin एकाग्रता का विश्लेषण खनिज एसिड (एचसीएल और एच2तो4) का उपयोग कर पूरा किया है । इसके अलावा, अंलीय आईएल जूट बायोमास में वर्तमान pentosan के रूपांतरण के लिए इस्तेमाल किया C5 शर्करा की एक उत्कृष्ट उपज दिखाया (७६%) और 5-10% oligomers के साथ साथ furfural (12%), और प्रतिक्रिया पानी में आयोजित किया गया था किसी भी बाहरी बिना अंलीय आईएल की एक छोटी मात्रा का उपयोग दबाव और उपचार । इसके अलावा, अम्लीय आईएल ९०% pentosan रूपांतरण पर प्रदर्शित करता है (pentosan के रूपांतरण C5 शर्करा की पैदावार की मदद से गणना की गई थी, furfural, और oligomers).

हमने जूट बायोमास में मौजूद pentosan के रूपांतरण के लिए C5 चाशनी में विधि विकसित की है, लेकिन इस विधि को भी जूट बायोमास में मौजूद pentosan एकाग्रता के निर्धारण के लिए लागू किया जा सकता है. इसके अतिरिक्त, अंय विभिंन lignocellulosic बायोमास में मौजूद pentosan एकाग्रता वर्तमान विधि का उपयोग कर निर्धारित किया जा सकता है ।

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

हमारे पास खुलासा करने के लिए कुछ नहीं है ।

Acknowledgments

हम विज्ञान और प्रौद्योगिकी (ताइवान के अधिकांश) (104-2628-E-002-008-MY3 के मंत्रालय का शुक्रिया अदा करना चाहूंगा; 105-2218-e-155-007; 105-2221-e-002-003-MY3; 105-2221-ए-002-227-MY3; 105-2622-ए-155-003-CC2) और राष्ट्रीय ताइवान में शीर्ष विश्वविद्यालय परियोजना के लिए उद्देश्य वित्त पोषण सहायता के लिए विश्वविद्यालय (105R7706) । हम उच्च शिक्षा गुणवत्ता संवर्धन परियोजना (HEQEP), #2071 पूरा प्रस्ताव के एक उपपरियोजना के माध्यम से इस काम के आंशिक धन के लिए विश्व बैंक के लिए आभारी हैं । यह काम भी आंशिक रूप से विश्वविद्यालय वॉलोंगॉंग के AIIM (गोल्ड फंडिंग) द्वारा समर्थित किया गया था ।

Materials

Name Company Catalog Number Comments
1-Methylimidazole Sigma Aldrich M50834
1,3-Propanesultone Sigma Aldrich P50706 Moisture sensitive
p-nitroaniline Sigma Aldrich 185310
Toluene J. T. Baker 9460-03
Sulfuric acid Honeywell-Fluka 30743 Highly corrosive
Hydrochloric acid Honeywell-Fluka 30719 Highly corrosive
1-butyl-3-methylimidazolium chloride Sigma Aldrich 900856 Highly hygroscopic
D(+)-Xylose Acros Organics 141001000
L(+)-Arabinose Acros Organics 104981000
UV-Spectrometer JASCO V-670
Parr reactor Parr USA Seriese 4560
Parr reactor controller Parr USA Seriese 4848
High pressure liquid chromatography (HPLC) JASCO Seriese LC-2000
Digital hot plate stirrer Thermo Scientific SP142020-33Q Cimarec
Oven furnace Thermal Scientific FB1400 Thermolyne blast oven furnace

DOWNLOAD MATERIALS LIST

References

  1. Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage. 42 (11), 1357-1378 (2001).
  2. Matsagar, B. M., Dhepe, P. L. Brönsted acidic ionic liquid-catalyzed conversion of hemicellulose into sugars. Catal. Sci. Technol. 5 (1), 531-539 (2015).
  3. Matsagar, B. M., Dhepe, P. L. Effects of cations, anions and H+ concentration of acidic ionic liquids on the valorization of polysaccharides into furfural. New J Chem. 41 (14), 6137-6144 (2017).
  4. Food and Agriculture Organization of the United Nations. , Available from: http://faostat3.fao.org/download/Q/QC/E (2014).
  5. Costa Lopes, A. M., Morais, A. R. C., Łukasik, R. M. Sustainable Catalytic Strategies for C5-Sugars and Biomass Hemicellulose Conversion Towards Furfural Production. Production of Platform Chemicals from Sustainable Resources. , Springer Singapore. 45-80 (2017).
  6. Matsagar, B. M., Munshi, M. K., Kelkar, A. A., Dhepe, P. L. Conversion of concentrated sugar solutions into 5-hydroxymethyl furfural and furfural using Bronsted acidic ionic liquids. Catal. Sci. Technol. 5 (12), 5086-5090 (2015).
  7. Gürbüz, E. I., et al. Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γ-Valerolactone. Angew Chem Int Ed. 52 (4), 1270-1274 (2013).
  8. Filiciotto, L., Balu, A. M., Van der Waal, J. C., Luque, R. Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins. Catal Today. 302, 2-15 (2017).
  9. Matsagar, B. M., et al. Direct Production of Furfural in One-pot Fashion from Raw Biomass Using Brønsted Acidic Ionic Liquids. Sci. Rep. 7 (1), 13508 (2017).
  10. Gschwend, F. J. V., et al. Pretreatment of Lignocellulosic Biomass with Low-cost Ionic Liquids. J Vis Exp. (114), e54246 (2016).
  11. Xu, F., et al. Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ. Sci. 9 (3), 1042-1049 (2016).
  12. Sun, J., et al. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids. Green Chem. 19 (13), 3152-3163 (2017).
  13. Nguyen, C. V., et al. Combined treatments for producing 5-hydroxymethylfurfural (HMF) from lignocellulosic biomass. Catal Today. 278 (Part 2), 344-349 (2016).
  14. Yan, N., Yuan, Y., Dykeman, R., Kou, Y., Dyson, P. J. Hydrodeoxygenation of Lignin-Derived Phenols into Alkanes by Using Nanoparticle Catalysts Combined with Brønsted Acidic Ionic Liquids. Angew Chem Int Ed. 49 (32), 5549-5553 (2010).
  15. Weerachanchai, P., Lee, J. -M. Recyclability of an ionic liquid for biomass pretreatment. Bioresour. Technol. 169 (Supplement C), 336-343 (2014).
  16. Shill, K., et al. Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng. 108 (3), 511-520 (2011).
  17. Tadesse, H., Luque, R. Advances on biomass pretreatment using ionic liquids: An overview. Energy Environ. Sci. 4 (10), 3913-3929 (2011).
  18. Agirrezabal-Telleria, I., Gandarias, I., Arias, P. L. Production of furfural from pentosan-rich biomass: Analysis of process parameters during simultaneous furfural stripping. Bioresour. Technol. 143 (Supplement C), 258-264 (2013).
  19. Yingying, L., et al. An Improved Method for Determination of Pentosans in Pulps using Dual-Wavelength Spectroscopy. BioResources. 11 (3), 6801-6807 (2016).
  20. Kumar, A. K., Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4 (1), 7 (2017).
  21. Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 48 (8), 3713-3729 (2009).

Tags

पर्यावरण विज्ञान अंक १३६ जूट बायोमास Brønsted अम्लीय ईओण तरल Hammett अम्लता pentosan xylose arabinose lignin.
Pentosan के लिए एक उपंयास विधि जूट बायोमास में मौजूद विश्लेषण और चीनी मोनोमर अम्लीय ईओण तरल का उपयोग कर में अपने रूपांतरण
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Matsagar, B. M., Hossain, S. A.,More

Matsagar, B. M., Hossain, S. A., Islam, T., Yamauchi, Y., Wu, K. C. W. A Novel Method for the Pentosan Analysis Present in Jute Biomass and Its Conversion into Sugar Monomers Using Acidic Ionic Liquid. J. Vis. Exp. (136), e57613, doi:10.3791/57613 (2018).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter