Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Chemistry

对金属有机骨架进行光谱测量的技术指南

Published: April 28, 2023 doi: 10.3791/65072

Summary

在这里,我们使用聚合物稳定剂来制备金属有机框架(MOF)悬浮液,其基态和瞬态吸收光谱的散射显着降低。通过这些MOF悬浮液,该协议提供了各种指南,以光谱学表征MOF以产生可解释的数据。

Abstract

金属有机框架(MOF)提供了一个独特的平台来理解固态材料中的光驱动过程,因为它们具有很高的结构可调性。然而,基于MOF的光化学的进展受到光谱表征这些材料的困难的阻碍。鉴于MOF的尺寸通常大于100 nm,它们容易出现过多的光散射,从而使来自瞬态吸收和发射光谱等有价值的分析工具的数据几乎无法解释。为了获得基于MOF的光化学和物理过程的有意义的见解,必须特别考虑为光谱测量正确准备MOF,以及获得更高质量数据的实验设置。考虑到这些考虑,本指南为MOF的光谱研究提供了一般方法和一套准则。该指南涉及以下关键主题:(1)样品制备方法,(2)使用MOF的光谱技术/测量,(3)实验设置,(3)对照实验和(4)运行后稳定性表征。通过适当的样品制备和实验方法,在基本理解光-MOF相互作用方面取得的开创性进展明显更容易实现。

Introduction

金属有机骨架(MOF)由由有机分子连接的金属氧化物节点组成,当它们的组成部分在溶剂热条件下一起反应时,它们会形成分层多孔结构1。永久多孔MOFs在2000年代初首次被报道,从那时起,鉴于其结构组件234567的独特可调性新兴领域已扩展到广泛的应用。在MOFs领域的发展过程中,有一些研究人员将光活性材料整合到MOF的节点,配体和孔隙中,以利用它们在光驱动过程中的潜力,如光催化8910,11,上转换12,13,14,1516和光电化学1718.MOFs的一些光驱动过程围绕着供体和受体之间的能量和电子转移1719202122232425用于研究分子系统中的能量和电子转移的两种最常见的技术是发射和瞬态吸收光谱2627

关于MOFs的大量研究集中在排放表征上,因为制备样品,进行测量和(相对)直接分析相对容易1922,232428能量转移通常表现为供体发射强度和寿命的损失以及加载到MOF骨干网192328中的受体的发射强度的增加。MOF中电荷转移的证据表现为MOF2930中发射量子产率和发色团寿命的降低。虽然发射光谱是MOF分析的有力工具,但它仅解决了部分必要信息,以呈现对MOF光化学的完整机理理解。瞬态吸收光谱不仅可以支持能量和电荷转移的存在,而且该方法还可以检测与非发射单重态和三重态激发态行为相关的光谱特征,使其成为表征313233的最通用工具之一。

瞬态吸收光谱等更稳健的表征技术很少应用于MOF的主要原因是由于难以制备具有最小散射的样品,尤其是悬浮液34。在少数成功对MOFs进行瞬态吸收的研究中,MOF的尺寸为<500 nm,但有一些例外,强调了减小粒径以最小化散射152125353637的重要性。其他研究利用MOF薄膜17或SURMOFs383940来规避散射问题;但是,从适用性的角度来看,它们的使用非常有限。此外,一些研究小组已经开始用Nafion或聚苯乙烯34制造MOF的聚合物薄膜,鉴于Nafion上的高酸性磺酸盐基团,前者引起了对稳定性的一些担忧。从胶体半导体悬浮液4142的制备中获得灵感我们发现使用聚合物来帮助悬浮和稳定MOF颗粒以进行光谱测量取得了巨大成功11。在这项工作中,我们建立了广泛适用的指南,以便在制备MOF悬浮液并使用发射,纳秒(ns)和超快(uf)瞬态吸收(TA)光谱技术对其进行表征时遵循。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1.使用聚合物稳定剂制备MOF悬浮液

  1. 称出50mg双氨基封端聚乙二醇(PNH2,Mn ~1,500)(见材料表)并转移到单德拉姆小瓶中(材料表)。称出1-5mg的PCN-222(fb)(参见合成方案11),并将其放入与PNH2相同的小瓶中。
    注意:为了获得最佳的MOF悬浮液,使MOF颗粒尺寸所需的合成条件需要等于或低于1μm。
  2. 找到合适的溶剂(如果不是水,请使用无水溶剂,如二甲基甲酰胺[DMF]或乙腈[ACN];见 材料表)来悬浮MOF,确保溶剂窗口足够宽,以使溶剂本身不会被所选波长激发。使用装有适当移液器吸头的自动移液器将 1-3 mL 溶剂转移到小瓶中。
    注:上述常用溶剂具有较宽的溶剂窗口-CH3CN:200 nm高能截止;和 DMF:270 nm 截止值。具有较高折射率(1.4-1.5)的溶剂,如DMF、DMSO和甲苯,可以通过与石英玻璃的折射率(约1.46-1.55)更紧密地对齐来帮助最大限度地减少光散射,从而最大限度地减少光在通过比色皿时在不需要的方向上的弯曲。
  3. 使用尖端超声仪(参见 材料表),以20%-30%的振幅(即超声仪尖端纵向移动的距离,通常~60μm对于3mm直径的探头,通常在30%振幅下)超声处理小瓶内容物2-5分钟,间隔为2秒开和2秒关。此过程用于分解 MOF 聚集体,并帮助用聚合物包覆 MOF 颗粒。确保MOF悬浮液在超声处理过程结束时分散良好且均匀。
    注意:超声处理时间因 MOF 固有分散程度而异。
  4. 打开新鲜的10 mL塑料注射器(材料表)并将悬浮液吸入注射器。取出注射器针头并用聚四氟乙烯(PTFE)网状200nm注射器过滤器代替(材料表)。将悬浮液通过注射器过滤器进入新的清洁小瓶中。所得悬浮液可用于瞬态吸收光谱测量。
    注意:鉴于某些MOF的平均粒径超过200 nm,选择合适的尺寸由用户自行决定。

2. 用于纳秒级瞬态吸收测量(nsTA)的滤波MOF悬浮液的制备

  1. 使用在第1节中获得的过滤MOF悬浮液,需要获得悬浮液的吸收光谱(材料表)。用溶剂清洗能够密封和吹扫(材料表)的比色皿(1 cm 光程)三到五次,然后用 3 mL DMF 填充。
  2. 使用吸收分光光度计,选择一个波长区域来测量溶剂和悬浮液。测量比色皿中溶剂的空白紫外可见(UV-Vis)光谱,并将其设置为要从样品扫描中减去的背景扫描。清空比色皿中的溶剂内容物并将MOF悬浮液转移到比色皿中。
    注意:PNH2 稳定剂(Equation 1 ~250nm)的电子吸收光谱具有弱吸收尾,持续到450nm,初始浓度在450nm处的吸光度为~0.01。
  3. 测量初始MOF悬浮液的吸收光谱,牢记激发MOF样品所需的波长。如果MOF悬浮液在所需的激发波长下具有吸光度或光密度(OD)>1,则用溶剂稀释并测量吸光度光谱,直到OD在激发波长处≤1。
    注意:对于窄角瞬态吸收测量,请使用2 mm电池重复吸收测量以在激发波长处获得适当的OD(材料表)。对于MOF的纳秒瞬态吸收测量,需要激发波长处的吸光度或OD为0.1-1才能遵循比尔定律。所需的OD范围很广,因为一些样品在不同区域吸收强烈。一个完美的例子是卟啉。卟啉在 400-450 nm 之间具有很强的窄 Soret 带跃迁,而它们在 500-800 nm 之间的 Q 波段跃迁非常弱。如果要在其中一个Q波段激发,则在其中一个Q波段制备OD ~0.5的溶液将因此表现出Soret带吸收>3,并且瞬态吸收检测器将无法定量处理该区域的变化。最终,用户可自行决定适当的激发波长和吸光度幅度,以便在所需的光谱窗口中进行定量测量。

3. 清除 MOF 暂停

  1. 将MOF悬浮液调整为具有TA测量所需的吸光度光谱后,将2 mm x 8 mm搅拌棒(材料表)放入比色皿中,并用橡胶隔膜密封入口比色皿接头。
  2. 取一个1毫升塑料注射器(材料表),用一把剪刀切掉一半,并保持注射器的一半,以便将针头连接到其上。
  3. 将柔性管的一端连接到Ar或N2 罐(材料表),将注射器一半插入管的另一端,针头端在外面。
  4. 用封口膜(材料表)包裹暴露的注射器的茎一半,以与管和注射器形成密封。如果有软管夹,则可以使用它代替封口膜来与注射器和吹扫管形成密封。
  5. 将长吹扫针(3英寸,25克)(材料表)连接到注射器末端,然后将针头插入密封的比色皿中。从1mL注射器中取出针头(步骤3.2)并将其插入比色皿中。打开 Ar 或 N2 流并吹扫悬浮液 45 分钟-1 小时。
    注意:一种称为“双重吹扫”的技术通常用于沸点<100°C的溶剂。 为了采用这种技术,用入口针吹扫带有溶剂的密封烧瓶,套管的一端插入烧瓶顶部空间,套管的另一端插入比色皿悬浮液中。出口针插入比色皿顶部空间。以这种方式吹扫可最大限度地减少随时间推移蒸发造成的溶剂损失。
  6. 清除完成后,取下针头,用四到五个 2 片封口膜包裹比色皿隔膜(材料表)。测量样品的吸收光谱,以确保其符合第2节中设定的标准。样品现在已准备好进行瞬态吸收测量。

4. 垂直泵浦探头纳秒级瞬态吸收设置(nsTA)

  1. 打开激光和nsTA光谱仪系统(材料表;图1)。将激光输出功率调整到足够低的水平,以便在光束路径中放置一张白色名片可以清楚地看到激光光斑,但不要太亮以至于致盲。
  2. 打开机械激光快门和探头光束快门,使它们都在样品架的路径中。
  3. 调整激光束的垂直和水平位置(图1,P3),使其击中样品池支架的中心(图1,SC1),放置样品。使用名片确认职位。放置中性密度 (ND) 滤镜 (OD 2;目录)在探头光束的路径中。
    注意:本文所述的nsTA系统中的所有反射镜和棱镜都安装在运动安装座上(材料表),并通过手动转动安装座上的垂直和水平旋钮来调整光束位置。在SC1中,可以在空比色皿的内侧放置一张较长的1厘米宽的白色卡片,以便于对齐。
  4. 将一张切割好的名片(~1.5 cm宽)放在样品架中(或将其放在样品架中),并将其与样品架成一定角度,使激光束和探针束都击中名片的同一侧。垂直微调激光束位置(P3),以获得与探头光束最强部分的最佳重叠。
  5. 关闭百叶窗,取下ND滤镜,然后将样品与磁力搅拌器一起放入样品室(材料表)。现在可以进行 TA 测量。
  6. 这项工作中使用的系统和软件在 材料表中提供。在软件套件中,有标题为光谱吸收和动力学吸收的选择框,分别用于测量TA 光谱 吸收动力学 。选择 光谱吸收 按钮,然后选择设置模式。
  7. 在软件设置窗口中设置激光脉冲的时间零点,方法是以+0.010 μs(例如,-0.020 μs、-0.010 μs、0.000 μs、0.010 μs等)的增量调整输入时间,直到在探头光束光谱中未观察到激光脉冲。
  8. 设置时间零点后,通过调整带宽、增益和栅极宽度来优化在设置窗口中照射到电荷耦合器件(CCD)探测器的光量,以达到足够高的计数,从而在不使探测器饱和的情况下获得足够的信号。
    注意:我们将此过程留给用户,因为检测器因系统而异。
  9. 要收集 TA 光谱,请单击光谱吸收选项卡中的“多个”按钮。确保设置窗口中的设置存在于此窗口中。如果样品发光,请单击“背景”选项卡,然后单击“减去荧光背景”按钮。对于粗略扫描,将平均值设置为 4,以确保获得高质量的初始 TA 光谱。如果获得令人满意的TA光谱,则获得另一个具有更多平均值的TA光谱。
  10. 要在时间零之后的不同时间延迟映射 TA 光谱,请选择光谱吸收选项卡中的映射按钮。确保此选项卡中的设置参数未更改。输入所需的映射时间间隔,单击“应用”,然后单击“开始”以映射光谱。
  11. 要获得所需波长的吸收动力学,请单击软件中的 动力学吸收 按钮,然后单击下拉菜单中的 设置 按钮。在设置窗口的 控制器 选项卡中输入感兴趣的波长,并将带宽调整到合适的水平。通常,1 nm的带宽是一个很好的起点。
  12. 示波器 选项卡中,调整光电倍增管 (PMT) 检测器的时间窗口,使其足够长,可以看到从激光激发之前到信号完全衰减回基线的整个动力学迹线。通常的起点是 4,000 ns 窗口。将PMT电压范围调整到合适的水平,此时整个TA迹线都可以在信号轴上观察到。开始测量时,160 mV 的电压范围是合理的。单击“ 应用 ”,然后单击 “开始”。如果信号太低或时间窗口太短或太长,请单击“ 停止 ”并将带宽和时间窗口调整到合适的水平,确保不要将带宽设置得太高以免饱和/损坏探测器。
  13. 正确设置动力学迹线后,关闭设置窗口,然后单击动力学吸收按钮后从下拉菜单中打开多个窗口。检查以确保“设置”窗口中的参数在“多个”窗口中相同。设置所需的测量次数(激光射击)。通常,对于TA频谱的高信号区域,20次测量是令人满意的。如果样品以探针波长发射,请务必检查背景”选项卡中的“减去荧光背景”按钮。单击“应用”,然后单击“开始”以收集 TA 动力学。
    注意:有时,执行较多的拍摄次数(>40)会使探头/激光散射干扰的衰减基线(正或负)移动。如果这是一个问题,则执行较少的拍摄次数(~10-20)并多次重复测量以收集多组数据,然后可以将它们平均在一起。
  14. TA测量完成后,随后测量MOF的吸收光谱,以确保最小的降解。

5. 窄角 nsTA 设置

  1. 有时,使用垂直泵浦探针设置时,从MOF悬浮液获得的信号非常弱(<10 ΔmOD),并且由于激发的大样品体积,仍然会因散射而波动。为了帮助最小化信号波动并增强信号,可以将超快瞬态吸收设置应用于具有窄角泵浦探头光束方向和较小路径长度的 nsTA 设置(图 2)。
  2. 根据样品室的设置,可以聚焦和引导激发光束,使泵和探头光束以<45°的角度交叉,从而提供更多的重叠。使用聚焦光学元件(图 2,凹透镜 [CCL] 和凸透镜 [CVL])和运动镜(图 2,MM1-3)来做到这一点。打开激光/光谱仪系统并重复步骤4.2和4.3。
    注意:虽然使用凹/凸透镜是聚焦光学器件的理想选择,但可以使用光学光圈代替这些组件来缩小光束。以这种方式缩小光束可以通过增加功率来补偿;然而,当使用低于400nm的波长时,虹膜的降解和漂白是很常见的。一些TA光谱仪没有试验板,不允许在样品室中安装光学器件。这里使用的光谱仪没有试验板,因此在样品室中钻孔并攻丝以设置光学元件(图2,MM1-3)。如果光谱仪仍在保修期内,请联系公司支持团队,看看他们是否可以适应这样的设置。
  3. 为了减小击中2毫米比色皿的光束光斑尺寸(材料表),设置一个伽利略望远镜,首先用凹透镜(材料表,CCL1)击中激光,然后用凸透镜(材料,CVL1)击中激光。确保两个镜头之间的距离大约是镜头的两个焦距之间的差异。
    注意:这些测量中使用的光谱物理量子射线激光器的光斑尺寸为1厘米。伽利略望远镜的设置使光斑尺寸减半。对于输出兆瓦功率的激光器,需要专门使用伽利略望远镜。开普勒望远镜(两个凸透镜)在两个透镜之间形成等离子体,即使是中等功率(~10 mW)。
  4. 打开激光和探头快门。将第一个快门镜 (SM1) 更换为 SM2,并将记事卡放入 SM2 夹紧支架中,使其方向完全面向探头光束。然后,设置一系列迷你反射镜(MM1-3),如图 2所示。通过将 P3 运动安装座上的旋转旋钮大约调整到 MM1 的中心,将入射激光束引导到。为了最大限度地减少激光束在镜子之间的扩展,请将MM2放在MM1前面以降低两个镜子之间的反射角度(图2)。
    注意:对于激光对准,常见的做法是将镜子/棱镜调整为远离预定光斑位置的一面镜子(例如,调整P2以精确击中MM1)。然而,这里讨论的实验中的P2是固定的光束引导光学元件,不应进行调整。如果具有灵活性,则应使用光学元件与目标光学器件相距一镜子进行对准。
  5. 当光束大约击中MM1的中心时,旋转MM1,使反射的激光束击中中心的MM2。当光束大约击中MM2的中心时,旋转MM2,使反射的激光束击中中心的MM3。当光束大约击中MM3的中心时,旋转MM3,使反射的激光束在与探头光束相同的位置击中对准笔记卡。
  6. 使用镜子上的垂直和水平旋钮微调每个镜子和便条卡上的激光束位置。确保光束在整个路径中几乎没有削波。
  7. 使用具有 14/20 内接头 (SC2) 和 14/20 橡胶隔膜(材料表)的 2 mm 比色皿重复步骤 5.5 和 5.6。将样品插入完全面向探头光束路径的夹紧样品支架(SM2)。使用镜子上的垂直和水平旋钮微调每个镜子和SM2上的激光束位置。
    注意: 为了更方便地在垂直和窄角 TA 设置之间切换,可以使用 MM1 的翻转或磁性运动镜支架代替常规运动学安装座,以避免重新对准光学元件。MM2 和 MM3 的放置不应影响垂直设置中的入射泵浦或探头光束。
  8. 使用薄型搅拌器(材料表),适度搅拌样品并进行TA测量。重复步骤 4.6-4.14。
    注意:对于 1-20 Hz 激光器,通常可以使用较低的功率(~1 mJ/脉冲)。

6. 超快瞬态吸收测量

  1. 对准泵浦和探头光束以实现最大重叠
    1. 第 1 节中的 MOF 暂停程序不会更改。TA前吸收测量(第2节)不会改变,除了使用SC2而不是SC1(材料表)。如果需要,清除过程也不会改变。
    2. 为了对齐用于ufTA测量的泵浦和探针束,首先在2 mm光程比色皿中制备已知发色团[例如Ru(bpy)32+]的溶液,在激发波长处OD为0.5-1。无需吹扫样品。
      注意:选择在与MOF样品相同的波长区域中表现出TA光谱的标准样品。通常,MOF 链接器可用作标准。
    3. 打开超快激光泵浦源和光谱仪(图3)。打开光参量放大器软件(如果存在)并将其设置为所需的激发波长。打开 ufTA 光谱仪软件并选择探头窗口(紫外可见、可见光或近红外 [近红外])。
      注:确保光学延迟级在短时间延迟和长时间延迟时对齐。根据系统的不同,这是手动或通过光谱仪软件完成的。大多数商业系统在软件中都有一个“对齐延迟阶段”选项,可以单击该选项来对齐它。
      注意: 如果可能,在观察泵和探头光束时关闭灯或尽量减少光干扰。
    4. 将标准比色皿与探针束对齐放入样品架中。如有必要,使用 ND 滤光片转轮调整泵浦源功率(图 3,ufND),以查看泵浦光束。将一张白色记事卡放在面向泵和探头梁的比色皿侧。
    5. 使用运动安装座上的旋转旋钮调整记事卡上的泵点,使其与探头梁处于相同的垂直高度,并水平调整泵,使其在探头梁旁边的 1 mm 或 2 mm 范围内。在没有记事卡的情况下,微调泵浦光束的垂直和水平位置,以获得最高的TA光谱信号。
    6. 调整泵浦光束的焦点(图3,TS),使其在撞击标准样品比色皿时处于最小光斑尺寸。焦点在获得最大信号时的最小点。一旦获得最高的光谱信号,泵浦和探头光束就会最佳地对齐。
      注意:商用ufTA系统(材料表)通常具有 实时视图 选项,允许用户在正式测量样品之前设置时间零并查看整个TA光谱。
  2. 确定泵浦光束光斑尺寸和能量密度
    1. 泵和探头光束对齐后,用安装的针孔轮(2,000-25 μm 孔; 目录)在激光束的焦点处(补充图1,PHW)。确保针孔轮几乎(如果不是完全)垂直于激光束的路径。
    2. 设置针孔轮,使激光束通过 2,000 μm 针孔。在针孔轮的另一侧紧密设置一个连接到功率计的探测器(补充图1,PWR),以便所有激光束都击中探测器。
    3. 使用 ND 滤光片转轮调整泵浦源功率,以便检测器测量足够的功率。请注意该针孔尺寸下的平均功率。
    4. 将针孔轮旋转到较小的针孔尺寸,并调整激光束的垂直和水平位置,以获得该针孔的最大功率输出。注意针孔尺寸的功率。对逐渐变小的针孔重复此步骤,直到达到最小的针孔。
      注意:虽然针孔测量更像是一种近似方法,但与使用CCD相机的替代方法进行比较时,它足以进行测量,后者可能花费数千美元。
    5. 在数据分析软件中,绘制数据以生成伪高斯曲线的一半(它不会是完美的,因为光束本质上不是完全高斯曲线)。要获得对称曲线,请获取相同的数据并按光斑尺寸的升序粘贴。
    6. 将数据乘以 -1,因此最小值现在是最大值。绘制数据并将其拟合到高斯曲线。将拟合曲线的最大值除以 e2。曲线在 1/e2 处的宽度是近似的光斑尺寸直径。
  3. 线性功率响应检查
    1. 为了确保在所需的功率水平(例如,多光子激发过程、多粒子衰变)下不存在非线性效应,需要在啁啾响应之后立即记录MOF TA频谱中多个点的信号,以不同的功率记录。确定五个功率电平以构成曲线。
    2. 用样品架更换针孔轮,然后将标准样品放回支架中。重复步骤6.1(重新对准过程应该容易得多,因为在步骤6.2中仅对泵梁进行了轻微调整)。
    3. 一旦泵和探头光束对齐,并且MOF样品在样品架中搅拌,使用连接到泵浦光束路径中检测器的功率计测量并记录平均泵功率。
    4. 从光束路径中取出检测器,在 实时取景 TA模式下,在啁啾响应(~2-3 ps)之后,立即记录TA光谱中不同点的MOF样本的ΔOD信号。在其他四个电源级别重复步骤 6.3.3 和 6.3.4。
      注意:有时信号在较低功率水平下非常弱,因此如果该选项可用,请将“实时取景”模式下的平均时间增加到5-10秒,以获得更好的信噪比并降低探头光束信号波动。我们通常在所有功率测量中将平均时间设置为 2-5 秒,并在随后的每个平均周期中记录波长处的 OD 几次,以获得每个功率的标准偏差。
    5. 在数据分析软件中将记录的数据点绘制为 ΔOD 与入射功率的关系。如果存在线性功率响应,则生成的曲线形成一条直线,其中 y 截距为零。如果如预期的那样存在非线性功率响应,通常会观察到与线性曲线的显着偏差。
  4. 确定撞击悬浮液样品的能量密度
    1. 在已知泵浦光束光斑尺寸和击中MOF悬架的入射功率的情况下,可以确定近似的能量密度。
      注意: 例如,大约 250 μm 的光斑直径提供 ~125 μm 的半径。将半径转换为厘米后,可以计算出光斑的表面积:A = πr 2 = π(0.0125cm)2 ≈ 0.0005 cm 2.将入射功率(例如,30 μW)除以激光重复率(500 Hz),每个脉冲的平均能量为0.06 μJ。最后,将每个脉冲的平均能量除以光斑表面积,得到每个脉冲的平均能量密度为120 μJ·cm-2。理想的能量密度是提供足够的TA信号,同时下降到泵浦功率的线性范围内;但是,如果可以在不牺牲太多信号的情况下使用较低的功率,则应使用。在 <10 ps 时 ~1 的 ΔmOD 是信号和泵浦功率之间的良好折衷。
  5. 执行超快 TA 测量
    1. 将MOF样品放在支架中,泵浦和探头光束重叠,并为样品选择理想的激发功率,执行ufTA测量。
    2. 检查 实时取景 窗口,确保将零时间正确设置为探测器啁啾的开始时间。
      注意:在标准样品和MOF样品之间切换时,时间零点可能会略有偏移,因此需要再次检查。
    3. 退出 实时取景 窗口,进入主光谱仪软件。通过设置快速扫描的参数并单击“ 开始 ”按钮,确保 MOF 挂起在整个扫描时间范围内提供最佳 TA 频谱。典型的快速扫描参数是 -5 ps 至 8,000 ps 的时间窗口、一次扫描、100 个数据点、指数点图(即以拟合指数曲线的增量记录的 100 个数据点)和 0.1 秒的积分时间。
    4. 快速扫描ufTA光谱完成后,整体看起来不错,更改扫描参数以获得更高质量的测量,然后单击 “开始 ”按钮。典型参数包括 -5 ps 至 8,000 ps 的时间窗口、三次扫描、200-300 个数据点、指数点图和 2-3 s 的积分时间。
      注意:通常建议测量时间不应超过1小时,以避免长时间退化,尤其是在泵功率较高的情况下。
    5. 高质量ufTA光谱完成后,将样品从样品架中取出并测量样品的吸收光谱,以确保几乎没有降解。通过将悬浮液通过20nm注射器过滤器(材料表)进一步确认最小降解,并再次测量吸收光谱。

7. 用于排放测量的MOF的准备

  1. 根据激发波长,PNH2 发出荧光,因此从该程序中省略,以获得MOF悬浮液的真实发射光谱和动力学。此外,省略了步骤1.7和1.8中的注射器过滤过程。
    注意:这些遗漏不会明显影响排放测量。
  2. 称出1毫克MOF并将其转移到干净的小瓶中。将 3-4 mL DMF 转移到含有 MOF 的小瓶中。重复步骤 1.3。
  3. 测量MOF悬浮液的吸光度光谱并稀释悬浮液,直到在激发波长处达到0.1-0.2的OD(第2节)。
  4. 执行上述清除程序(第 3 节)。MOF悬浮液现已准备好进行荧光测量。

8. MOF排放测量

  1. 打开荧光计和弧光灯(材料表,补充图2)。打开荧光计软件并选择发射模式。将吹扫的MOF悬浮液放入样品架中并适度搅拌。
  2. 使用步骤7.3中建立的激发波长,将激发和发射单色器狭缝设置为5 nm作为起点,并以0.1 s的积分时间进行粗略发射扫描。
  3. 一旦发射带宽经过优化以提供良好的信号(>10,000 计数),使用 1 秒积分时间(或更长)测量 MOF 发射光谱。然后,测量MOF在选定发射波长下的激发光谱。确保激发光谱看起来与MOF吸收光谱几乎相同。
  4. 关闭弧光灯狭缝,并在软件上将仪器模式切换到TCSPC(时间相关单光子计数)。
  5. 选择具有所需激发波长的用于TCSPC的LED之一,并将其连接到垂直于检测器窗口的样品室窗口。将必要的电线连接到 LED 以将其集成到荧光计中。
    1. 将仪器设置为所需的发射波长,将带宽设置为 5 nm(如有必要进行调整),并将时间窗口设置为 150 ns 作为起点(可以根据样品寿命缩短)。应用这些设置并从软件窗口开始 TCSPC 测量。
      注意:大多数 TCSPC 测量的一般停止点是当最大计数达到 10,000 值时。此外,最佳检测器计数率为LED重复率的1%-5%,以便遵循泊松统计。请咨询 TCSPC LED 制造商以获取设备规格(如果尚未提供)。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

带或不带PNH2 和滤波的PCN-222(fb)的电子吸收光谱如图 4所示。没有PNH2 的MOF只是尖端超声处理和稀释。当比较两种光谱时,最大的区别是基线散射的最小化,它表现为随着波长的减小而广泛的向上吸收,并且也非常明显地拓宽了电子跃迁。为了进一步比较,溶液中的PCN-222(fb)配体四羧基苯基卟啉(H2TCPP)在 补充图3中提供。基线散射的指标是MOF中的向上吸收,其中溶液中的配体不吸收。在TCPP的情况下,它在800nm处没有吸收,而没有PNH2 的MOF在该区域显示出明显的“吸收”。有时面临的一个问题是找到获得足够吸光度的过滤悬浮液所需的适当量的MOF。这通常是一个反复试验的过程,但如果过滤后的MOF悬浮液吸光度在MOF量范围内没有变化,那么使用孔稍大的注射器过滤器通常有效。

对DMF中不含PNH 2和H2 TCPP的尖端超声PCN-222(fb)进行了发射测量,如图5所示。不使用PNH 2的情况下,DMF中PCN-222(fb)和H 2 TCPP的激发和发射光谱对齐得很好,表明PNH2对于这些测量不是必需的。在我们之前的工作中,我们将PCN-222(fb)(1.5 ns,3 ns)和H2TCPP(4 ns,12 ns)之间的发射寿命差异(图5C)归因于MOF11中质子化和非质子化H2TCPP接头之间的能量转移猝灭过程。如果采用PNH 2悬浮方案进行发射测量,PNH2将在可见光区域(Equation 2= 475 nm)发射,突出其主要挫折。根据聚合物和浓度,它们在紫外线区域表现出吸收,有时在可见光区域表现出吸收。在PNH2的情况下,如补充图4所示,其吸收起始发生在约450nm,尽管处于弱水平(~0.01OD)。此外,当被415 nm光激发时,PNH2具有较宽的发射光谱(补充图5)。虽然PNH2对发射测量提出了一个问题,但它与瞬态吸收测量的参与很小。如果样品需要紫外激发进行瞬态吸收测量,则必须使用聚合物溶液进行控制实验。在大多数情况下,可以从MOF光谱中减去聚合物TA谱(如果存在),或者可以在MOF衰变寿命内确定它们的衰变寿命。一个好的规则是将每个样品的聚合物量保持在或低于 50 毫克。

使用MOF悬浮液获得nsTA和ufTA光谱。图6是PCN-222(fb)在415nm处激光激发后立即在溶液中(Soret带激发)的TA光谱,有和没有PNH 2,以及H2 TCPP。正如在没有PNH2的PCN-222(fb)光谱中观察到的那样,存在大量的散射,导致TA光谱随着波长的减小而变得越来越负。非PNH 2 TA谱图(图6A)与溶液中H2 TCPP的谱图形成鲜明对比,值得关注。此外,没有PNH 2的H2TCPP和PCN-222(fb)的动力学截然不同(图7)。观察PCN-222(fb)与PNH 2的光谱,寿命和光谱都与H2TCPP TA光谱11一致。为了获得完整的光物理图像,需要获得MOF的高质量初始TA光谱,以及基态漂白剂(负信号)和激发态吸收(正信号)的动力学,以查看它们是否彼此一致。使用窄角nsTA设置的其他测量结果见补充图6。比较两种实验设置之间PCN-222(fb)的nsTA光谱表明,使用窄角设置,在较低功率密度下的信号有适度改善。观察PCN-222(fb)与PNH2的ufTA光谱,与溶液中的接头非常相似(图8),在~420 nm处显示基态漂白剂,漂白剂两侧都有激发态吸收。由于PNH 2与PNH 2的PCN-222(fb)的nsTA和ufTA测量与溶液中的H2 TCPP非常一致,因此我们得出结论,观察到的信号来自MOF,而不是由于散射。测量后,重新测量PCN-222(fb)+ PNH2的吸收光谱(补充图7),看起来与初始光谱几乎相同,表明整个实验中的降解最小。为了进一步确认任何降解,MOF悬浮液可以通过20nm注射器过滤器(材料表),并且滤液的后续紫外-可见光谱应具有来自MOF接头的最小吸光度,否则将指示降解。

溶液中配体的对照实验和文献是分析MOF TA谱图的关键因素。在MOF TA光谱中观察到的宽负信号应被视为MOF发生过多散射的普遍标志。此外,当观察泵浦和探头光束产生的过量散射的MOF的动力学曲线时,散射不仅在仪器响应函数(IRF;通常是激光器的脉冲宽度)内衰减;它的寿命可以长达微秒,掩盖了真正的动力学衰减,但是这种行为背后的原因在MOF社区中基本上尚未探索(图7A)。主要结论是,如果信号大致为负并且寿命不像配体的寿命(有例外),那么数据就不值得解释。

Figure 1
图 1:垂直泵浦探头 nsTA 设置的简化示意图 材料表)。P1-P3是石英定向/对准棱镜;CCM1,2是定向凹面镜,用于引导探头光束;SC1 是用于 nsTA 测量的 1 cm 样品比色皿;SM1是光谱仪制造商提供的样品支架;BD 是一个光束转储(可选);FL是仪器制造商提供的聚焦透镜。要将泵浦激光器(光化泵)与样品室中的探针光束对准,必须调整腔内棱镜(P3)。所有其他光学器件都是静止的。 请点击此处查看此图的大图。

Figure 2
图 2:窄角泵浦探头 nsTA 设置的简化示意图 材料表)。P1-P3是石英定向/对准棱镜;CCM1,2是定向凹面镜,用于引导探头光束;SC1 是用于 nsTA 测量的 1 cm 样品比色皿;SM1是光谱仪制造商提供的样品支架;BD 是一个光束转储(可选);FL是仪器制造商提供的聚焦透镜;覆铜板是一种双凹透镜;中央静脉线是一种平凸透镜;MM1-3是定向微型镜,用于将泵浦光束引导到样品池;SC2 是 2 mm 光程长度的样品池;SM2 也是用于 ufTA 测量的夹紧样品支架。对齐泵浦和探头光束所需的关键因素是泵浦光束在镜子MM1-3和SC2上正确放置,而SC2保持在探头光束的焦点处。 请点击此处查看此图的大图。

Figure 3
图 3用于表征 MOF超快瞬态吸收设置(材料表)的简化示意图。OPA是用于产生泵浦源的光参量放大器;ufND是用于衰减输入泵浦功率的ND滤光轮;TS是用于聚焦泵浦光束的望远镜;ufM是将进入的泵浦光束引导到样品池上并将泵浦光束与探头光束对齐的运动镜;SC2 是用于 ufTA 测量的 2 mm 光程样品池;ufSM是用于ufTA测量的夹紧样品支架。在MOF测量中对准泵浦和探头光束的关键是首先将光束与溶解的标准样品对齐。请点击此处查看此图的大图。

Figure 4
图 4:无 PNH 2(黑色迹线)、PNH 2 和过滤(红色迹线)的尖端超声处理 PCN-222(fb) 的稳态吸收光谱,H2 TCPP(MOF 接头)的吸收光谱显示为蓝色迹线。溶剂是DMF。散射的一个关键指标是在真实样品吸收光谱下方有广泛的向上吸收,如没有PNH2的PCN-222(fb)的吸收光谱所示。相反,PNH2的样品几乎没有向上吸收。请点击此处查看此图的大图。

Figure 5
图5:发射光谱。A)尖端超声处理和稀释的PCN-222(fb)(绿色迹线)和H2TCPP(MOF配体;蓝色迹线)的发射光谱;(B)尖端超声处理和稀释的PCN-222(fb)(绿色迹线)和H2TCPP(MOF配体;蓝色迹线)在720nm处测量的激发光谱;(C) 在 650 nm 处测量的 PCN-222(fb)(绿色迹线)和 H2TCPP(蓝色迹线)的时间相关单光子计数 (TCSPC) 衰减迹线。动力学拟合是红色迹线。溶剂为DMF,光谱和TCSPC发射测量的激发波长均为415 nm。PCN-222(fb)和H 2 TCPP的发射和激发光谱彼此紧密对齐,H2TCPP和PCN-222(fb)的动力学曲线也相当。先前的工作将PCN-222(fb)(1.5 ns,3 ns)与H2TCPP(4 ns,12 ns)相比寿命缩短归因于从未质子化MOF接头(长寿命成分)到充当能量陷阱的质子化接头(短寿命成分)的能量转移猝灭11。该图经Benseghir等人许可改编11请点击此处查看此图的大图。

Figure 6
图 6:纳秒 TA 光谱。尖端超声处理的PCN-222(fb)(A)不含PNH 2,(B)具有PNH 2和过滤,以及(C)H 2 TCPP(MOF配体)在DMF中的光谱。λex = 415 nm, 3 mJ·cm-2.与没有PNH2的PCN-222(fb)的基态吸收光谱类似,TA光谱也显示出散射引起的450-800 nm的宽“吸光度”特征。相比之下,PNH 2@PCN-222(fb)的TA谱与其亲本接头H2 TCPP的TA谱相似,表明来自MOF的真实TA信号。该图经Benseghir等人许可改编11请点击此处查看此图的大图。

Figure 7
图 7:nsTA 动力学衰减迹线及其拟合(红色迹线)。A) 在基态漂白剂 (GSB; 420 nm) 和激发态吸收 (ESA; 385 nm) 处无 PNH 2 的尖端超声处理 PCN-222(fb),(B) 尖端超声处理和过滤的 PCN-222(fb),PNH 2 在 419 nm 和 470 nm 处,以及 (C) H 2 TCPP(MOF 配体)在 420nm 和 470 nm 处在 DMF 中。λex = 415 nm, 3 mJ·cm-2.与PCN-222(fb)相比,PNH 2@PCN-222(fb)的动力学衰减与H2 TCPP的时间曲线更加一致。我们将在PCN-222(fb)中观察到的衰变动力学归因于探头和泵浦光束的散射。重要的是要注意,散射通常产生的动力学不仅限于仪器响应时间,还会产生延伸到微秒区域的额外衰减。该图经Benseghir等人许可改编11请点击此处查看此图的大图。

Figure 8
图 8:ufTA 光谱时间映射(2 ps-3 ns;紫色到深红色)。A)使用PNH 2进行尖端超声处理PCN-222(fb)和(B)DMF中的MOF接头H2 TCPP。λex = 400 nm, 50 μJ·cm-2.所有ufTA光谱都具有相似的特征,表明MOF产生的真实信号。在PCN-222(fb)的情况下,光谱变化比单独的接头更明显,这可能是由于激发的单重态通过有效能量转移到MOF中的质子化H4TCPP中心以及一些能量转移到PNH2悬浮剂。质子化的MOF接头来自制造MOF所需的酸性合成条件。请点击此处查看此图的大图。

补充图1:确定泵浦激光光斑尺寸时的ufTA样品室示意图。 ufND是用于衰减输入泵浦功率的ND滤光轮;TS是用于聚焦泵浦光束的望远镜;ufM是将进入的泵浦光束引导到样品池上并将泵浦光束与探头光束对齐的运动镜;PHW是具有各种孔径的圆形针孔轮(材料表);PWR是用于测量针孔尺寸减小时的功率的功率计。我们强调针孔轮需要位于泵浦光束的焦点处,以获得准确的光斑尺寸。 请点击此处下载此文件。

补充图2:用于MOF发射测量的荧光计示意图。 SC1 是 1 cm 光程长度的样品池(材料表);FO1是激发波长聚焦光学器件;FO2是TCSPC(时间相关单光子计数)LED聚焦光学器件;PMT是用于光谱发射测量的光电倍增管。 请点击此处下载此文件。

补充图3:DMF中H2TCPP的吸收光谱。420 nm处的强吸收是S 0→S2跃迁(Soret波段),500-700 nm的四个振动跃迁是S0→S1跃迁(Q波段)。请点击此处下载此文件。

补充图4:DMF中PNH2 的吸光度光谱。 吸光度在~450nm处开始。 请点击此处下载此文件。

补充图5:PNH2 在DMF中被415 nm光激发时的发射光谱。 由于PNH2会发出荧光,因此在发射测量过程中我们经常避免使用它。 请点击此处下载此文件。

补充图6:使用窄角泵浦探头设置的尖端超声和滤波PCN-222(fb)的纳秒TA光谱(原理图见图2)。与传统的垂直泵浦探头设置相比,窄角设置在使用较低的泵浦能量(1 mJ·cm-2)时显示出明显的信噪比增加。λex = 415 nm。请点击此处下载此文件。

补充图7:PCN-222(fb)+PNH2的吸收光谱。 nsTA测量前的吸收光谱(红色迹线),nsTA测量后的吸收光谱(蓝色迹线)和nsTA测量后的20 nm MOF滤液(绿色迹线)表明在实验过程中样品降解很小。该图经Benseghir等人许可改编11请点击此处下载此文件。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

虽然上述结果和协议描述了在光谱表征中最小化MOF散射的一般准则,但MOF粒径和结构存在很大的差异,影响光谱结果,因此模糊了解释方法。为了帮助澄清解释并缓解分析MOF光谱数据带来的压力,找到一种使MOF尽可能小的程序是关键。这是大多数光谱学相关MOF分析的限制因素。在进行任何进一步的准备之前,MOF粒径是需要考虑的关键因素。一个绝佳的起点是寻找用于光动力疗法4434445 的 MOF 合成程序。

准备 MOF 暂停时,需要解决一些注意事项。我们通常使用PNH2 作为悬浮稳定剂,因为它可溶于一系列典型溶剂,并且在紫外可见光范围内吸收最少;然而,根据某些溶剂,其他聚合物可能更合适(PEG,PVA等)。用户可自行决定为其溶剂体系找到合适的聚合物。此外,聚合物的分子量/重量保持在较低水平,以防止过滤过程中的困难。使用吸头超声仪时,超声处理所花费的时间越少越好。尖端超声处理是一种比浴超声处理更具侵略性的方法,更长的超声时间/更高的振幅(>20 分钟,>30%)可能会降解材料4647。确定降解的一个很好的测试是使悬浮液通过20nm滤光片,以便只有分子通过,并检查剩余溶剂的吸收光谱。确定最佳超声时间/间隔/振幅通常是一个反复试验的过程;但是,上述协议是一个很好的起点。我们建议首先使用浴超声处理,看看是否可以制作足够的悬浮液。

当悬浮液通过注射器过滤器时,通常使用200和400nm孔径的注射器过滤器。如果MOF粒径接近1μm,则通常使用400nm注射器滤光片使更多的MOF通过滤光片。这种选择会导致TA频谱中出现更多的散射,但不会明显影响数据。此外,MOF倾向于聚集在注射器过滤器上,从而防止更多的MOF通过它。为了解决这个问题,一小部分MOF通过过滤器,注射器被拉回一点(在此过程中将过滤器上的聚集MOF拉回注射器),然后将注射器柱塞推回过滤器,在此过程中将更多的MOF推出。重复该方法,直到注射器中没有悬浮液。

虽然MOFs可以被认为比溶液中的组成配体更稳定,但瞬态吸收实验中使用的功率/能级存在限制。我们强调在ufTA测量和光斑尺寸测量中对ufTA和nsTA测量进行线性检查的重要性。这些测量可确保测量过程中不存在非线性效应,并最大限度地减少样品降解量。此外,我们强调需要执行上述对照实验。窄角nsTA测量实际上是“最后的手段”,只有在MOF TA信号较弱(<10 mOD)且样品信号在1 cm路径长度的单元中散射过多时才需要。采用更小的光程比色皿和更小的光束尺寸有助于最大限度地减少沿光路累积的散射。

荧光测量有几个注意事项。对于溶液状态测量,通常在激发波长处使用0.1的OD,以最大程度地减少重吸收效应。与稀释溶液相比,当信号较弱且具有亚致变色移位时,荧光光谱中存在重吸收。对于MOF,激发波长处的OD由于基线散射而变化。有时,0.1-0.2的OD可提供足够的信号。我们建议调整浓度,直到MOF荧光光谱中存在重吸收效应,然后稀释直到获得足够的信号而没有这种效应。

通过这项工作中建立的指导方针,我们的目标是减轻目前在MOF上进行光谱测量带来的一些负担。鉴于制备MOF悬浮液的方案易于,可以对其进行广泛修改以满足给定研究人员所需的规格。随着文献中光活性MOFs的出现越来越多,确定对控制MOF光化学的光驱动过程的深刻理解的能力更加可行。我们预测,在这项工作中建立的制备技术不仅将有助于推动MOF光化学领域的进展,而且还将延续到其他与固有易散射的固态材料一起工作的领域。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者声明没有竞争利益。

Acknowledgments

这项工作得到了能源部在拨款DE-SC0012446的支持下。

Materials

Name Company Catalog Number Comments
1 cm cuvette sample mount (SM1) Edinburgh Instruments n/a Contact company
1 mL disposable syringes EXELINT 26044
10 mL disposable syringes EXELINT 26252
1-dram vials FisherSci CG490001
20 nm syringe filters VWR 28138-005 The filters are made by Whatman/Cytiva, and their catalog number is 6809-1002
200 nm syringe filters Cytiva, Whatman 6784-1302
Absorption spectrophotometer Agilent  Cary 5000 Spectrophotometer Contact company
Acetronitrile (ACN) FisherSci AA36423
Ar gas tank Linde/PraxAir P-4563
bis amino-terminated polyethylene glycol (PNH2) Sigma-Aldrich 452572 MOF suspending agent
Clamping sample mount for nsTA (SM2) Ultrafast Systems n/a Contact company
Concave lens for telescope(CCL1) Thorlabs LD1613-A-ML
Convex lens for telescope (CVL1) Thorlabs LA1708-A-ML
Custom 1 cm optical cell with 24/40 outer joint QuarkGlass QSE-1Q10-2440 (Spectrosil Cat #1-Q-10 We requested the 1 cm cell to have a joint
Custom 2mm optical cell with 14/20 outer joint QuarkGlass QSE-1Q2-1420 (Spectrosil Cat # 1-Q-2) We requested the 2 mm cell to have a joint
Dimethylformamide (DMF) FisherSci D119
Dye laser (Nd:YAG pumped) for 415 nm output Sirah CobraStretch
Dye laser dye, Exalite 417 Luxottica 4170
Femtosecond laser Coherent Astrella
Fluorimeter  Photon Technology Inc. (Horiba) QuantaMaster QM-200-4E
Fluorimeter arc lamp, 75 W Newport 6251NS
Fluorimeter PMT Hamamatsu 1527
Fluorimeter Software PTI/Horiba FelixGX
Fluorimeter TCSPC Module Becker & Hickl GmbH PMH-100
lens mounts for telescope Thorlabs LMR1
Long purging needles STERiJECT PRE-22100
Magnetic stirrer Ultrafast Systems n/a Contact company
mirror 1 (MM1) 350-700 nm Newport 10Q20BB.1
MM1 mount Thorlabs KM100
MM1 post Thorlabs TR2
MM1 post holder Thorlabs PH1.5
MM2 mount Thorlabs MFM05
MM2,3 mirrors thorlabs BB03-E02
MM2,3 post Thorlabs MS3R
MM2,3 post bases Thorlabs MBA1
MM2,3 post holders Thorlabs MPH50
MM3 mount Thorlabs MK05
mounting posts for telescope optics Thorlabs TR4
Nanosecond TA Nd:YAG lasers Spectra-Physics QuantaRay INDI Nd:YAG
Nanosecond TA spectrometer Edinburgh Instruments LP980
nsTA ICCD camera Oxford Instruments Andor iStar ICCD camera Contact company
nsTA PMT  Hamamatsu R928
Optical parametric amplifier Ultrafast Systems Apollo
Parafilm FisherSci S37440
Pinhole wheel Thorlabs PHW16
Pinhole wheel post base Thorlabs CF125C
Pinhole wheel post holder Thorlabs PH1.5
Pinhole wheel post/mount assembly Thorlabs NDC-PM
post bases for telescope optics Thorlabs CF125C
post holders for telescope optics Thorlabs PH4
Power detector for ns TA Thorlabs S310C
Prism assembly (P2,3) Edinburgh Instruments n/a Contact company
Prism mount (P1) OWIS K50-FGS
Prism post (P1) Thorlabs TR4
Prism post base (P1) Thorlabs CF125C
Prism post holder (P1) Thorlabs PH4
Quartz prisms (P1-P3) Newport 10SR20
Rubber outer joint septa (14/20) VWR 89097-540
Rubber outer joint septa (24/40) ChemGlass CG-3022-24
Sonication tip Branson product discontinued Closest alternative is 1/8" diam. tip from iUltrasonic
Square ND filters Thorlabs NEK01S
Stir bars StarnaCells/FisherSci NC9126395
Thorlabs power detector for ufTA Thorlabs S401C
Thorlabs power meter Thorlabs PM100D
Tip sonicator Branson Digital Sonifer 450, product discontinued Closest alternative is SFX550 from iUltrasonic
Tygon tubing Grainger 8Y589
ufTA ND filter wheel Thorlabs NDC-25C-2-A
ufTA ND filter wheel mount Thorlabs NDC-PM
ufTA ND filter wheel post Thorlabs PH2
ufTA ND filter wheel post base Thorlabs CF125C
ufTA pump alignment mirror Thorlabs PF10-03-F01
Ultrafast TA telescope assembly Ultrafast Systems n/a Contact company
Ultrafast transient absorption spectrometer Ultrafast Systems HeliosFire
Xe arc probe lamp OSRAM 4050300508788

DOWNLOAD MATERIALS LIST

References

  1. Zhou, H. -C., Long, J. R., Yaghi, O. M. Introduction to metal-organic frameworks. Chemical Reviews. 112 (2), 673-674 (2012).
  2. Li, H., et al. Recent advances in gas storage and separation using metal-organic frameworks. Materials Today. 21 (2), 108-121 (2018).
  3. Xie, L. S., Skorupskii, G., Dincă, M. Electrically conductive metal-organic frameworks. Chemical Reviews. 120 (16), 8536-8580 (2020).
  4. Ye, Y., Zhao, Y., Sun, Y., Cao, J. Recent progress of metal-organic framework-based photodynamic therapy for cancer treatment. International Journal of Nanomedicine. 17, 2367-2395 (2022).
  5. Gibbons, B., Cai, M., Morris, A. J. A potential roadmap to integrated metal organic framework artificial photosynthetic arrays. Journal of the American Chemical Society. 144 (39), 17723-17736 (2022).
  6. Wang, Q., Gao, Q., Al-Enizi, A. M., Nafady, A., Ma, S. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorganic Chemistry Frontiers. 7 (2), 300-339 (2020).
  7. Bavykina, A., et al. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chemical Reviews. 120 (16), 8468-8535 (2020).
  8. Wang, C., Xie, Z., deKrafft, K. E., Lin, W. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Journal of the American Chemical Society. 133 (34), 13445-13454 (2011).
  9. Wang, Q., Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews. 120 (2), 1438-1511 (2020).
  10. Lan, G., et al. Electron injection from photoexcited metal-organic framework ligands to ru2 secondary building units for visible-light-driven hydrogen evolution. Journal of the American Chemical Society. 140 (16), 5326-5329 (2018).
  11. Benseghir, Y., et al. Unveiling the mechanism of the photocatalytic reduction of CO2 to formate promoted by porphyrinic Zr-based metal-organic frameworks. Journal of Materials Chemistry A, Materials for Energy and Sustainability. 10 (35), 18103-18115 (2022).
  12. Rowe, J. M., et al. Sensitized photon upconversion in anthracene-based zirconium metal-organic frameworks. Chemical Communications. 54 (56), 7798-7801 (2018).
  13. Gharaati, S., et al. Triplet-triplet annihilation upconversion in a MOF with acceptor-filled channels. Chemistry. 26 (5), 1003-1007 (2020).
  14. Wang, F., et al. Transformable upconversion metal-organic frameworks for near-infrared light-programmed chemotherapy. Chemical Communications. 57 (63), 7826-7829 (2021).
  15. Roy, I., et al. Photon upconversion in a glowing metal-organic framework. Journal of the American Chemical Society. 143 (13), 5053-5059 (2021).
  16. Park, J., Xu, M., Li, F., Zhou, H. -C. 3D long-range triplet migration in a water-stable metal-organic framework for upconversion-based ultralow-power in vivo imaging. Journal of the American Chemical Society. 140 (16), 5493-5499 (2018).
  17. Lin, S., et al. Photoelectrochemical alcohol oxidation by mixed-linker metal-organic frameworks. Faraday Discussions. 225, 371-383 (2020).
  18. Jiang, Z. W., Zhao, T. T., Li, C. M., Li, Y. F., Huang, C. Z. 2D MOF-based photoelectrochemical aptasensor for SARS-CoV-2 spike glycoprotein detection. ACS Applied Materials & Interfaces. 13 (42), 49754-49761 (2021).
  19. Shaikh, S. M., et al. Role of a 3D structure in energy transfer in mixed-ligand metal-organic frameworks. The Journal of Physical Chemistry C. 125 (42), 22998-23010 (2021).
  20. Shaikh, S. M., et al. Light harvesting and energy transfer in a porphyrin-based metal organic framework. Faraday Discussions. 216, 174-190 (2019).
  21. Logan, M. W., et al. Systematic variation of the optical bandgap in titanium-based isoreticular metal-organic frameworks for photocatalytic reduction of CO2 under blue light. Journal of Materials Chemistry A, Materials for Energy and Sustainability. 5 (23), 11854-11863 (2017).
  22. Zhang, Q., et al. Förster energy transport in metal-organic frameworks is beyond step-by-step hopping. Journal of the American Chemical Society. 138 (16), 5308-5315 (2016).
  23. Kent, C. A., et al. Energy transfer dynamics in metal-organic frameworks. Journal of the American Chemical Society. 132 (37), 12767-12769 (2010).
  24. Lin, J., et al. Triplet excitation energy dynamics in metal-organic frameworks. The Journal of Physical Chemistry C. 117 (43), 22250-22259 (2013).
  25. Li, X., Yu, J., Gosztola, D. J., Fry, H. C., Deria, P. Wavelength-dependent energy and charge transfer in MOF: a step toward artificial porous light-harvesting system. Journal of the American Chemical Society. 141 (42), 16849-16857 (2019).
  26. White, T. A., Arachchige, S. M., Sedai, B., Brewer, K. J. Emission spectroscopy as a probe into photoinduced intramolecular electron transfer in polyazine bridged Ru(II),Rh(III) supramolecular complexes. Materials. 3 (8), 4328-4354 (2010).
  27. Miller, J. N. Fluorescence energy transfer methods in bioanalysis. Analyst. 130 (3), 265-270 (2005).
  28. Cao, W., Tang, Y., Cui, Y., Qian, G. Energy transfer in metal-organic frameworks and its applications. Small Structures. 1 (3), 2000019 (2020).
  29. Lan, G., et al. Titanium-based nanoscale metal-organic framework for type i photodynamic therapy. Journal of the American Chemical Society. 141 (10), 4204-4208 (2019).
  30. Chen, D., Jin, Z., Xing, H. Titanium-porphyrin metal-organic frameworks as visible-light-driven catalysts for highly efficient sonophotocatalytic reduction of Cr(VI). Langmuir. 38 (40), 12292-12299 (2022).
  31. Berera, R., van Grondelle, R., Kennis, J. T. M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynthesis Research. 101 (2-3), 105-118 (2009).
  32. Brown, A. M., McCusker, C. E., McCusker, J. K. Spectroelectrochemical identification of charge-transfer excited states in transition metal-based polypyridyl complexes. Dalton Transactions. 43 (47), 17635-17646 (2014).
  33. Farr, E. P., et al. Introduction to time-resolved spectroscopy: nanosecond transient absorption and time-resolved fluorescence of eosin B. Journal of Chemical Education. 95 (5), 864-871 (2018).
  34. Pattengale, B., Ostresh, S., Schmuttenmaer, C. A., Neu, J. Interrogating light-initiated dynamics in metal-organic frameworks with time-resolved spectroscopy. Chemical Reviews. 122 (1), 132-166 (2022).
  35. Santaclara, J. G., et al. Organic linker defines the excited-state decay of photocatalytic MIL-125(Ti)-type materials. ChemSusChem. 9 (4), 388-395 (2016).
  36. Hanna, L., Long, C. L., Zhang, X., Lockard, J. V. Heterometal incorporation in NH2-MIL-125(Ti) and its participation in the photoinduced charge-separated excited state. Chemical Communications. 56 (78), 11597-11600 (2020).
  37. Gutierrez, M., Cohen, B., Sánchez, F., Douhal, A. Photochemistry of Zr-based MOFs: ligand-to-cluster charge transfer, energy transfer and excimer formation, what else is there. Physical Chemistry Chemical Physics. 18 (40), 27761-27774 (2016).
  38. Adams, M., et al. Highly efficient one-dimensional triplet exciton transport in a palladium-porphyrin-based surface-anchored metal-organic framework. ACS Applied Materials & Interfaces. 11 (17), 15688-15697 (2019).
  39. Hassan, Z. M., et al. Spectroscopic investigation of bianthryl-based metal-organic framework thin films and their photoinduced topotactic transformation. Advanced Materials Interfaces. 9 (13), 2102441 (2022).
  40. Li, X., et al. Ultrafast relaxation dynamics in zinc tetraphenylporphyrin surface-mounted metal organic framework. The Journal of Physical Chemistry C. 122 (1), 50-61 (2018).
  41. Triggiani, L., et al. Excitation-dependent ultrafast carrier dynamics of colloidal tio2 nanorods in organic solvent. The Journal of Physical Chemistry C. 118 (43), 25215-25222 (2014).
  42. Pu, Y., Cai, F., Wang, D., Wang, J. -X., Chen, J. -F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Industrial & Engineering Chemistry Research. 57 (6), 1790-1802 (2018).
  43. Zhou, L. -L., et al. One-pot synthetic approach toward porphyrinatozinc and heavy-atom involved Zr-NMOF and its application in photodynamic therapy. Inorganic Chemistry. 57 (6), 3169-3176 (2018).
  44. Zhao, Y., et al. Metal-organic frameworks with enhanced photodynamic therapy: synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation. ACS Applied Materials & Interfaces. 12 (21), 23697-23706 (2020).
  45. Zeng, J. -Y., et al. π-extended benzoporphyrin-based metal-organic framework for inhibition of tumor metastasis. ACS Nano. 12 (5), 4630-4640 (2018).
  46. Cheng, Q., Debnath, S., Gregan, E., Byrne, H. J. Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties. The Journal of Physical Chemistry C. 114 (19), 8821-8827 (2010).
  47. Baig, Z., et al. Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion. Ultrasonics Sonochemistry. 45, 133-149 (2018).

Tags

化学,第194期,
对金属有机骨架进行光谱测量的技术指南
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Cairnie, D. R., Morris, A. J. AMore

Cairnie, D. R., Morris, A. J. A Technical Guide for Performing Spectroscopic Measurements on Metal-Organic Frameworks. J. Vis. Exp. (194), e65072, doi:10.3791/65072 (2023).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter