Fuente: David Guo, College of Engineering, Technology, and Aeronautics (CETA), Southern New Hampshire University (SNHU), Manchester, New Hampshire
Las distribuciones de presión y las estimaciones de arrastre para el flujo cilíndrico cruzado se han investigado durante siglos. Mediante la teoría de flujo potencial inviscida ideal, la distribución de la presión alrededor de un cilindro es verticalmente simétrica. La distribución de presión aguas arriba y aguas abajo del cilindro también es simétrica, lo que resulta en una fuerza de arrastre de red cero. Sin embargo, los resultados experimentales producen patrones de flujo, distribuciones de presión y coeficientes de arrastre muy diferentes. Esto se debe a que la teoría potencial inviscida ideal asume el flujo irrotacional, lo que significa que la viscosidad no se considera ni se tiene en cuenta al determinar el patrón de flujo. Esto difiere significativamente de la realidad.
En esta demostración, se utiliza un túnel de viento para generar una velocidad de aire especificada, y se utiliza un cilindro con 24 puertos de presión para recopilar datos de distribución de presión. Esta demostración ilustra cómo la presión de un fluido real que fluye alrededor de un cilindro circular difiere de los resultados predichos en función del flujo potencial de un fluido idealizado. El coeficiente de arrastre también se estimará y se comparará con el valor predicho.
El flujo cilíndrico cruzado se ha investigado teórica y experimentalmente desde el siglo XVIII. Encontrar las discrepancias entre los dos nos permite ampliar nuestra comprensión de la dinámica de fluidos y explorar nuevas metodologías. La teoría del flujo de capa límite fue desarrollada por Prandtl [3] a principios del siglo XX, y es un buen ejemplo de la extensión del flujo invinfectado a la teoría del flujo viscid en la resolución de la Paradoja de D’Alembert.
En este experimento, …