Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

Enrichment Cultures: Culturing Aerobic and Anaerobic Microbes on Selective and Differential Medias



Bacteria are able to inhabit almost every environment on Earth, from desert tundra to tropical rainforests. This ability to colonize vastly different niches is due to their adaptability and vast metabolic diversity, which allows them to utilize a wide variety of molecules for energy generation. It is this massive array of diversity which leads to the phenomenon that less than 1% of the bacterial species on the planet are considered culturable and these are only possible due to an understanding of their specific metabolic and environmental needs.

Performing manipulations of media and environment in the laboratory not only allows researchers to experiment to find the optimal conditions for culturing a species of interest, but it also enables enrichment, the process of changing conditions to select for specific species from a mixed culture. Some microbial species are generalists and able to tolerate a wide variety of states or environments. Such organisms may grow readily under laboratory conditions, but they may also be prevented from growing if given an extreme habitat - which can help if the goal is to enrich for organisms from a mixed culture which are tolerant to this condition.

Fastidious organisms can be culturable but only when specific conditions are met. Neisseria or Haemophilus species, for example, require media containing partially broken down red blood cells and a high carbon dioxide concentration, which may also discourage the growth of other species. Extremophiles are named for their preference for extreme conditions, such as very low or high temperatures, reduced or oxygen absent conditions, or in the presence of high salt. These conditions are likely intolerable to most other microbes.

To further enrich for an organism of interest, some media types contain indicators which give insight into the metabolism of the organism. Mannitol Salt Agar inhibits the growth of organisms sensitive to high salt. Gram negative bacteria typically cannot survive, but the gram positive Staphylococcus genus are able to thrive. In addition, the MSA agar indicates any colonies able to ferment mannitol because the acid byproducts of fermentation will turn the methyl red indicator in the media to a bright yellow. This can allow for more specific selection of a species.

Another common enrichment medium, Eosin Methylene Blue, contains eosin and methylene blue dyes, which are toxic to gram positive organisms. It also contains lactose and bacteria on these plates which can ferment this will produce acids that lower the pH encouraging dye absorption. These colonies take up large amounts of pigment and appear dark and metallic. In this lab, you will grow four different test organisms across three different media conditions and then under aerobic versus anaerobic conditions before observing their development.

Before beginning the experiment, thoroughly wash your hands and dry them, before putting on appropriately sized laboratory gloves. Then, sterilize the work surface with 5% bleach, wiping it down thoroughly. Next, take a sterile inoculating loop and place it handle down into an empty 125 milliliter flask so that it does not touch the bench surface. Then, from the refrigerator, gather four plates of Mannitol Salt Agar, or MSA, four plates of Eosin Methylene Blue agar, EMB, and eight Tryptic Soy Agar, or TSA, plates. TSA medium is a non-selective growth medium which will be used for the two different environmental conditions. Finally, gather your cultures of interest in a tube rack. Here, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermis, and Proteus vulgaris will be grown.

To begin, light a Bunsen burner, which will be used to sterilize the tools. Then, place one MSA plate, one EMB plate, and two TSA plates close at hand. Then, select one of the bacterial cultures. You will inoculate all four of these plates with the first culture. With your free hand, pick up the inoculating loop and then sterilize it in the flame of the burner until it glows orange for a couple of seconds. Allow the loop to cool in the air. Then, open the broth culture tube and quickly flame the opening. Dip the loop into the culture and then streak the organism onto the first quadrant of the first plate. Then flame sterilize the loop again and streak the second quadrant. Repeat this action of flame sterilization and then streaking to complete the third and fourth quadrants. Streaking in this manner should give isolated colonies and also allow for confirmation that the culture is not contaminated.

Now, replace the lid and label the bottom of the plate with the name of the bacteria, media type, date, and your initials. Then, repeat the streak plating using the same bacterial culture for each of the remaining three plates taking care to label them each time. Now that the first culture has been streaked, repeat these steps for the other bacteria to obtain one inoculated MSA plate, one EMB plate, and two TSA plates for each species. Once all of the organisms have been transferred, flame the loop one final time.

To determine which organisms can grow in a reduced oxygen environment, open up a sealed gas chamber system and place one set of four TSA bacteria plates inside. Then, place an anaerobic condition sachet into the chamber and seal it tightly. Finally, place all of the plates, including those inside the sealed gas chamber system, into a 37 degree Celsius incubator overnight. Going forward, check the plates every 24 to 48 hours to give the colonies time to grow and metabolize any indicator reactants.

To assess how well the different bacterial species responded to each growth condition, first examine the plates for growth and record which species were able to produce colonies on each media type and in the anaerobic versus aerobic condition. Note the color of the organisms growing as well as the sizes and shape of the colonies.

The mannitol salt agar medium is selective for gram positive organisms which are able to survive in 6. 5% sodium chloride. In this experiment, this meant that the gram negative E. coli and P. vulgaris did not grow due to the high salt concentrations. S. epidermis and S. aureus were able to grow, however, confirming that they are gram positive. Additionally, there is a clear difference between the two species because the S. aureus is able to ferment mannitol turning the methyl red indicator in the media to a bright yellow due to the acid byproducts of fermentation. This was not seen in the case of S. epidermis.

The EMB medium on the other hand is selective for gram negative organisms because the eosin and methylene blue dyes are toxic to gram positive cells. The outer membrane of gram negative bacteria prevents these toxic dyes from entering the cells, meaning they are able to grow. Moreover, this medium indicates whether the bacterial species present is able to ferment lactose. Here, E. coli colonies turn a dark purple color, sometimes with a green metallic sheen indicating fermentation. P. vulgaris grows on this medium but does not ferment lactose and so appears a light pinkish to purple from being in the presence of the dye. In the anaerobic condition, the bacterial species on TSA media should still grow but may do so very poorly compared to those with ample oxygen. This is because none of the test species are obligate anaerobes.

Experiments like this to enrich the growth environment can help to favor and isolate a specific species from a mixed sample. They can also help determine the optimal growth conditions for different bacterial species in a laboratory setting, thus aiding further research.

Read Article

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter