Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

ジカウイルス複製阻害剤をスクリーニングする高スループット抗ウイルスアッセイ

Published: October 30, 2021 doi: 10.3791/62422

Summary

本研究では、ハイスループットスクリーニング形式でジカウイルス複製の阻害剤をスクリーニングするための、レビコンベースおよびウイルス酵素ベースのアッセイで使用されるプロトコルについて説明する。

Abstract

抗ウイルス薬の発見は、高スループットスクリーニング(HTS)フォーマットで行うことができる信頼性の高い生化学的および細胞アッセイの開発を必要とします。非構造(NS)タンパク質は、小胞体(ER)膜上で共同翻訳的に組み立てられ、複製複合体(RC)を形成すると考えられている。NS3とNS5はRCの最も研究された酵素であり、ウイルスゲノム複製における重要な役割のために医薬品開発の主な標的となる。NS2Bを補因子とするNS3プロテアーゼドメインは、未熟なウイルス性ポリタンパク質を成熟したNSタンパク質に切断するのに対し、NS5 RdRpドメインはRNA複製を担当します。本明細書において、ジカウイルス(ZIKV)複製の阻害剤に対する大規模な化合物ライブラリーを試験するために、レコンベースのスクリーニングおよび酵素アッセイで使用されるプロトコルについて詳細に説明する。Repliconsは哺乳類細胞で発現する自己複製型サブゲノム系であり、ウイルス構造遺伝子はレポーター遺伝子に置き換えられる。ウイルスRNA複製に対する化合物の阻害効果は、レポータータンパク質活性の低下を測定することによって容易に評価することができる。レプレッサンベースのスクリーニングは、 レニラル シファーゼをレポーター遺伝子として発現するBHK-21 ZIKVリプレコン細胞株を用いて行った。同定された化合物の特異的標的を特徴付けるため、組換えに発現NS3プロテアーゼおよびNS5 RdRp用のイン ビトロ 蛍光ベースアッセイを確立しました。ウイルスプロテアーゼのタンパク質分解活性を、フッ素化ペプチド基質Bz-nKRR-AMCを用いて測定した、 NS5 RdRp伸長活性は、RNA伸長中のSYBRグリーンIの蛍光シグナルの増加によって直接検出された一方で、合成バイオチン化自己プライミングテンプレート3'UTR-U30(5'-ビオチン-U30-ACUGGAGAUCGAUCUCCAGU-3')を使用した。

Introduction

ジカウイルス(ZIKV)は、フラビウイルス属の新興の節足動物媒介ウイルスメンバーであり、密接に関連するデング熱ウイルス(DENV)、日本脳炎ウイルス(JEV)および黄熱病ウイルス(YFV)を含み、公衆衛生に絶え間ない脅威をもたらす1。2015-16年のアメリカ大陸でのZIKVの流行は、新生児2、3およびギランバレー症候群の先天性ZIKV関連小頭症およびギランバレー症候群などの重度の神経障害との関連により、ブラジルでの出現に続いて世界的な注目を集めた。感染例の数は今後2年間で減少したが、2019年には87の国と地域でZIKVの蚊媒介感染が確認され、ウイルスが流行として再び出現する可能性を証明した現在までに、ZIKV感染に対する承認されたワクチンや有効な薬物はありません。

抗ウイルス薬の発見は、高スループットスクリーニング(HTS)フォーマットで行うことができる信頼性の高い細胞および生化学的アッセイの開発を必要とします。レプコンベースのスクリーニングとウイルス酵素ベースのアッセイは、ZIKV1の阻害剤に対する低分子化合物を試験するための2つの貴重な戦略である。非構造(NS)タンパク質とは、小胞体(ER)膜上で共翻訳的に組み立てられ、複製複合体(RC)6を形成すると考えられている。NS3とNS5はRCの最も研究された酵素であり、ウイルスゲノム複製における重要な役割のために医薬品開発の主な標的となる。NS2Bを補因子とするNS3プロテアーゼドメインは、未熟なウイルス性ポリタンパク質を成熟したNSタンパク質に切断する一方、NS5 RdRpドメインはRNA複製6を担う。

Repliconsは哺乳類細胞で発現する自己複製型サブゲノム系であり、ウイルス構造遺伝子はレポーター遺伝子に置き換えられる。ウイルスRNA複製に対する化合物の阻害効果は、レポータータンパク質活性7の低下を測定することによって容易に評価することができる。本明細書において、96ウェルプレート形式でのZIKV複製のスクリーニング阻害剤に用いられるプロトコルについて説明する。レパコンベースのアッセイは、我々が最近開発したBHK-21 ZIKV Rluc レパコンセルラインを使用して行われました8.同定された化合物の特異的標的を特徴付けるために、我々は、フッ素化ペプチド基質を用いて組換え発現NS3プロテアーゼに対する インビトロ 蛍光ベースアッセイを確立し、 Bz-nKRR-AMCは、NS5 RdRpの場合、合成バイオチン化自己プライミングテンプレート3'UTR-U30(5'-ビオチン-U30-ACUGGAGAUCGAUCUCUAAGU-3')の伸びを測定し、インターカレートダイSYBRグリーンI.

ジKVプロテアーゼ(グリシンリッチリンカー[G4SG4])によってNS3プロテアーゼドメインの残基1〜177に結合したNS2B補因子の45-96残基が得られたが、YFV9に記載されている通り、ポリメラーゼ(RdRpドメインの276-898残基)をクローニングし、10で詳述した。両方の酵素配列は、GenBank ALU33341.1に由来した。一次抗ウイルススクリーニングとして、化合物は10μMで試験され、80%≥活性を示す化合物は用量依存的に評価され、その結果、有効/阻害(EC50またはIC50)および細胞傷害(CC50)濃度が得られます。代表的な結果の文脈では、NITD008のEC50およびCC50値、既知のフラビウイルス阻害剤11、レコンベースのスクリーニングからが示されている。酵素アッセイの場合、抗菌、抗真菌および抗ウイルス活性を有する400分子からなるライブラリーであるMMV/DNDiパンデミック応答ボックスからの2つの化合物のIC50値が示されている。本研究で説明したプロトコルは、他の関連するフラビウイルスの阻害剤をスクリーニングするように変更することができる。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. ルシファーゼ活性アッセイ

注: 細胞培養に関連するすべての手順が、認定バイオセーフティフードで行われていることを確認します( 資料表を参照)。

  1. 10%FBSと500 μg/mL G418を補ったダルベックコの修正イーグルのミディアム(DMEM)で成る成長培地を準備します。
  2. 100%DMSOで試験した化合物の10mMストック溶液を調製し、100%DMSOで1mMに希釈します。
  3. 培養ZIKV Rlucレプコン細胞は、70-90%合流に達するまで、CO2 -加湿インキュベーター(材料表を参照)で37°Cで75cm2培養フラスコで培養します。
  4. メディアを破棄します。5 mLのトリプシン-EDTAをフラスコに5〜10分間加え、125 x g で細胞を遠心分離して5分間加えます。
  5. 上清を捨て、5 mLのDMEM 10%FBSで細胞を再懸濁し、ヘミック計で再懸濁細胞の10μLを数える。
  6. 96ウェルの細胞培養プレートで、DMEM 10%FBSで2 x 104 細胞/ウェルに細胞を調整し、1ウェル当たり100μLの細胞をシードします( 材料表を参照)。
  7. CO2 -加湿インキュベーターで37°Cでプレートを16時間インキュベートします(材料表を参照)。
  8. 次に、マルチチャンネルマイクロピペットで媒体を廃棄し、DMEM 2%FBSの100 μL/wellをプレートに追加します。
  9. 1ウェルあたり1μLの化合物を添加して、アッセイ媒体中の10μM 1%DMSOの最終濃度を得ます。最初の列では、阻害制御なしとしてDMSOを1%、最後の列にNITD008を正のコントロールとして追加します(100%阻害)。
  10. CO2-加湿インキュベーターで37°Cで48時間プレートをインキュベートします(材料表を参照)。
  11. ニラ ルシファーゼアッセイシステムキットを室温で解凍し、1x レニラ ルシファーゼライシスバッファー作業溶液と レニラ ルシファーゼ試薬(アッセイバッファー+基板;ウェルあたり100 μL)の適切な量を調製します。
  12. マルチチャンネルマイクロピペットで細胞から上澄み液を捨て、ウェルあたり1x レニラ ルシファーゼライシスバッファーの25 μLを追加します。
  13. プレートを室温で15分間インキュベートし、マルチチャンネルマイクロピペットで20 μLの細胞ライセートを、レニラルシファーゼアッセイ試薬の100 μL/wellを含む白色不透明な96ウェルプレート(材料表を参照)に移します。
  14. ルミネッセンス信号を、ルミノメーターまたは発光を読み取るオプションを持つ機器で読み取ります( 材料表を参照)。
  15. 各プレートについて、Z ファクター値 12を次のように計算します。SD - 標準偏差。0.5 と 1.0 の間の Z ファクターは、良質のアッセイ 12を意味します。
  16. 化合物のEC50 値を決定するには、ステップ1.3〜1.8の手順に従って進み、負(1%DMSO)および正(NITD008(10μMのNITD008)コントロールと共に、連続して希釈した化合物を細胞に加えます。重複してアッセイを2回実行する。
  17. 化合物濃度あたりの阻害率の平均値をプロットし、グラフ分析ソフトウェアを使用してシグモイドフィッティングを実行し、EC50 値を取得します。

2. 細胞増殖ベースMTTアッセイ

  1. 項目 1 ステップ 1.1 ~ 1.8 の説明に従って進めます。
  2. 最初は10μMで化合物を加え、コントロール1%DMSOを細胞に加えます。
  3. リン酸緩衝生理食塩水(PBS - 137 mM NaCl)に5 mg/mL MTT(3-(4-ジメチルチアゾール-2-イイル)-2,5-ジフェニルテトラゾリウム臭化)溶液を調製 2,7 mM KCl、10 mM Na2HPO 4、1,8 mM KH2PO4;pH7.4)およびMTTの完全な可溶化まで渦。
  4. MTT溶液をウェルボリュームの10分の1(10μL/ウェル)の細胞に加えます。
  5. 3-4時間CO2-加湿インキュベーター( 材料表を参照)で37°Cでプレートをインキュベートします。
  6. マルチチャンネルマイクロピペットで上澄み液を捨て、各ウェルに100 μLのDMSO(100%)を加えます。
  7. アップとダウンでformazan結晶を可溶化し、分光光度計で570 nmの吸光度を読み取ります( 材料表を参照)。
  8. 化合物のCC50 値を決定するには、項目1ステップ1.1〜1.8に記載された手順に進み、次いで、負(1%DMSO)制御を一緒に細胞に連続希釈した化合物を添加する。重複してアッセイを2回実行する。
  9. 化合物濃度あたりの阻害率の平均値をプロットし、グラフ分析ソフトウェアを使用してシグモイドフィッティングを実行し、CC50 値を取得します。

3. NS2B-NS3プロテアーゼ活性アッセイ

  1. 氷の上にタンパク質アリコートを解凍します。
  2. プレートリーダー( 材料表参照)温度を37°Cに設定します。
  3. 80 nM(5 μL/ウェル)に希釈したタンパク質の適切な量を準備します。最終的なタンパク質濃度は4nMである。
  4. 氷上のBz-nKRR-AMC基板の適切な量を解凍します(アッセイバッファーで希釈された300 μMストック溶液、10 μL/well)。
  5. 96ウェルの白い板( 材料のテーブルを参照)で、各井戸に84 μLのアッセイバッファー(20 mM Tris pH 8.5、5%グリセロール、0.01%トリトンX-100)を分配します。
  6. 正の制御反応を行うために、最後のカラムの各ウェルに1μLのアプロチニンを分配して、1μMの最終濃度を達成する(ストック溶液100μM水で希釈)
  7. 陰性制御反応を行うために、第1カラムにDMSOの1μL(最終濃度1%)を分配する。
  8. 化合物スクリーニングを行うために、各化合物の1μLを分配し、正および負の制御ウェルを除いた10μM(1mMストック濃度)の最終濃度を達成します。
  9. プロテアーゼ溶液の5 μLを分配する。
  10. プレートを4°Cで30分間インキュベートします。
  11. 反応を開始するには、Bz-nKRR-AMCストック溶液(最終濃度30μM)を10μL塗布します。
  12. 励起波長を380 nmに、発光を460 nmに設定し、マイクロプレートリーダーで1分ごとに30分間蛍光を読み込みます( 材料表を参照)。37°Cで実験全体を行います。
  13. 正と負のコントロール反応に対する蛍光の平均値を計算します。プロテアーゼ活性の100%を正制御の平均値から差し引いた負制御反応に対する蛍光の平均値を設定し、各化合物の活性の割合を算出する。
  14. 各プレートについて、ステップ 1.15 で説明したように、Z 係数の値を計算します。
  15. 80%を超える阻害率を示した化合物に対するIC50 判定を進める。
  16. ステップ3.1-3.13に記載されているようにトリクリケートでアッセイを実行し、化合物の連続希釈を使用する。
  17. 化合物濃度あたりの阻害率の平均値をプロットし、グラフ分析ソフトウェアを使用してシグモイドフィッティングを実行し、IC50 値を取得します。

4. NS5 RdRp伸長アッセイ

注:このアッセイで使用されるすべての材料は、RNase、DNaseおよびパイロジェナーゼ無料認定です。

  1. アッセイバッファー(50 mM Tris pH 7.0、2.5 mMMnCl 2、0.01%トリトンX-100)と200 mM ATPストック溶液を0.1%ジエチルピロカーボネート(DEPC)処理水で調製します。
  2. 200 μM 3'UTR-U 30(5'-biotin-U 30-ACUGGAGAUCGAUCCAGU-3')の5 μLアリコートを、サーモサイクルで55°Cで5分間インキュベートして、PCR処理水に含めます。
  3. NS5 RdRp、200 mM ATP、x10.000 SYBRグリーンIのストックソリューションを氷上で解凍します。
  4. タンパク質を3mLのアッセイバッファーで250 nMの最終濃度に希釈します。
  5. ATP、3'UTR-U30 およびSYBRグリーンIのストック溶液を3mLのアッセイバッファーでそれぞれ1mM、300 nMおよび1Xの最終濃度に希釈することによって、基質溶液を調製する。
  6. 96ウェル PCR プレート( 材料表を参照)では、各列の 1 ~ 11 列に希釈タンパク質 24.5 μL を追加します。残りのウェルに同じ量のアッセイバッファーを追加します。
  7. 制御およびブランク反応の場合は、列 1 および 12 に DMSO を 0.5 μL 追加します。DMSOで希釈した化合物を0.5 μL加えて、最終濃度の10 μM 1mMのストック溶液に加えます)。
  8. プレートをシールフィルムで密封し、室温で15分間インキュベートします。
  9. 25 μLの基質溶液を加えて反応を開始し、プレートを再び密封します。
  10. リアルタイムPCRシステムで30°Cでインキュベートし( 材料表を参照)、蛍光を1時間監視し、FAMフィルター(エミッション:494 nm/励起:521 nm)で蛍光を30sごとに測定します。
  11. 各プレートについて、ステップ 1.15 で説明したように、Z 係数の値を計算します。
  12. 工程3.15で説明したように、80%を超える阻害率を示した化合物に対するIC50 の判定を進める。
  13. 化合物濃度あたりの阻害率の平均値をプロットし、グラフ分析ソフトウェアを使用してシグモイドフィッティングを実行し、IC50 値を取得します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

本明細書に記載されているすべてのプロトコルは96ウェルプレートで刺され、プレートの最初と最後の列に配置された陰性および陽性対照を含む単一濃度の一次スクリーニングでプレート当たり80化合物の評価を可能にする。このレプレッサンベースのスクリーニングは、BHK-21-RepZIKV_IRES-Neo細胞株を得るために開発されたRNA構築物(図1A)、アッセイ回路図(図1B)、NITD008の用量応答曲線(EC50 0.28 μM、CC50>10μM)を含む図1に示されています(図1C)。 ヒット化合物のEC50およびCC50値は、ルク活性の50%を阻害し、それぞれ50%の細胞傷害性を引き起こすのに必要な濃度として決定される。ルシファーゼアッセイに関して、DMSO1%は抑制剤禁止(0%阻害)として使用され、NITD008は陽性対照(100%阻害)として使用される、前に述べた8。

NS2B-NS3プロテアーゼ活性は、プロテアーゼのタンパク質分解活性に起因して放出されるAMCの蛍光モニタリングによって測定される(図2A)。アプロチニンは、トリプシン阻害剤として作用し、フラビウイルスプロテアーゼ13、14、15の阻害剤として既に記載されているタンパク質でありこのアッセイにおいて実験的陽性対照として使用された(IC50の0.13±0.02μM、データは示されていない)。図2Bは、プロテアーゼ活性を標的とする分子の用量応答阻害曲線を示す、化合物MMV1634402(0.36のIC5000±0.08μM)を示す。NS5 RdRpの伸び活性は、合成されたdsRNAとインターカロートしたときのSYBRグリーンIの蛍光強度の増加によってリアルタイムで測定される(図2C)。ZIKV RdRpを標的とするヒット分子の用量応答阻害曲線は、化合物MMV1782220(IC50の1.9±0.8μM)を、図2Dに示す。NITD008のようなヌクレオシドアナログ阻害剤は酵素アッセイには適さないため、リン酸塩は分子16に細胞内に組み込まれる必要があるため、NS5 RdRp伸長アッセイには正の制御を使用しませんでした。しかし、最近ウイルスポリメラーゼ8の阻害剤として同定した市販の抗生物質であるクロフェジミンは、次のアッセイで実験的なコントロールとして使用することができます。

Figure 1
図1:レ返信会によるスクリーニング)5'UTR末流でルク配列を含むZIKVレコン構築体の概略表現と3'UTR末流でのネオ遺伝子を、BHK-21-RepZIKV-IRES_Neo細胞株8を得るために開発した。B)ジKV複製の阻害剤をスクリーニングするために行われるルシファーゼ活性アッセイおよび細胞増殖ベースMTTアッセイの概略表現。C)NITD008の線量応答曲線(EC 50およびCC50)アッセイは重複して行われた。誤差範囲は標準偏差を表します。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 2
図2: ウイルス酵素ベースアッセイ A) NS2B-NS3プロテアーゼ活性アッセイの概略的表現B)MMV1634402の用量反応阻害曲線(IC50)。C)NS5 RdRp RNAポリメラーゼ活性アッセイの概略表現D)化合物MMV1782220の用量応答阻害曲線(IC50)。アッセイは三つ子で行われた。誤差範囲は標準偏差を表します。この図の大きなバージョンを表示するには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

本明細書に記載されているプロトコルは、384または1536-well形式でのスクリーニングに容易に適応することができる。HTS形式で行われる生化学的および/または細胞ベースのスクリーニングの場合、Z'因子値は、統計的パラメータであり、それらのアッセイ12の感度、再現性および正確性を確保するために各プレートについて計算される。レコンベースのスクリーニングでは0.5以上のZ因子値が予想され、NS3およびNS5のアクティビティアッセイでは0.7以上の値が期待されます。レプリコンベースのHTSでは、5'UTR領域でレニラルシファーゼ(Rluc)配列を含む複製型ZIKVプリコンと、3'UTRの内部リボソーム入り口部位(IRES)によって駆動されるネオマイシンホスホトランスファーゼ(Neo)遺伝子を含む安定な細胞株であるBHK-21-RepZIKV_IRES-Neo細胞を開発しました。RNA翻訳の正しい開始に必要なカプシドの38残基および30残基のエンベロープ遺伝子を保持し、細胞通路の同等の複製レベルおよび薬物感受性を維持する。構造遺伝子の欠如のために、レプコンは、このように実験室後のウイルス感染のリスクを排除する、前生のビリオンを生成しません17.

ZIKVレコン細胞を用いた抗ウイルスアッセイは、ルシファーゼ活性と細胞増殖ベースMTT(細胞毒性)アッセイと並行して行われる。これは、偽陽性のヒットを排除するために必要であり、レポータータンパク質の発現および/または活性に直接干渉する分子と、細胞の健康に悪影響を及ぼす分子を含む7。Repliconシステムは、RNAの複製を阻害する分子の発見を可能にするが、ウイルスの侵入およびビリオンの組み立て/放出には必要とされない分子を発見する。あるいは、 トランス17に構造タンパク質を提供することによって、レプコンをパッケージ化してウイルスレコン粒子(VRP)を生成することができる。結果として生じる単一ラウンド感染性粒子(SRIP)は感染性であるが、パッケージゲノムには構造遺伝子がないため、子孫ウイルスは増殖できない。したがって、VRPは、レポータータンパク質7のレベルを測定することによって、ウイルスの侵入/複製の阻害剤をテストするために使用することができる。

また、レプコンベースのスクリーニングに加えて、組換えNS3プロテアーゼおよびNS5 RdRpに対するウイルス酵素ベースのアッセイに用いられるプロトコルについても詳細に説明する。ウイルスプロテアーゼのタンパク質分解活性を、蛍光タグ7-アミン-4-メチルクマリン(AMC)と結合したジコフプロテアーゼ認識および切断配列を含むフッ素化ペプチド基質Bz-nKRR-AMCを用いて測定した。プロテアーゼ活性のために、蛍光タグが放出され、反応速度は分光光度計18,19における蛍光をモニタリングすることによって直接測定される。このアッセイは、非常に賢明で、比較的安価で、迅速で、大規模な化合物ライブラリ20、21のスクリーニングに適しています。主な欠点は、偽陽性のヒットにつながる可能性のある試験化合物とフルオロフォアとの間の可能な消光です。しかし、この問題は、AMCの存在下で追加の蛍光測定によって対処することができる。また、同一波長の蛍光素の発光や吸収を示す化合物は、この方法18,20では評価できない。

NS5 RdRpに関しては、その伸び活性は、自己プライミング3'UTR-U30テンプレートの伸びの間にSYBRグリーンIの蛍光信号の増加によって直接検出されます。このプロトコルは、異なるウイルスポリメラーゼ22、23、24、25、26の化合物を評価するために広く使用されているピコグリーンおよびSYTO 9などのインターカリング色素を用いたアッセイから適応された。アッセイで自己プライミングビオチン化テンプレート27を使用していますが、poliUなどの他のテンプレートも25.この方法の主な欠点は、蛍光を妨害するか、またはdsRNAインターカレーション28を減少させることによって、色素と相互作用する偽陽性ヒットの数が多い点である。したがって、ヒット化合物は、生物物理学法などの対アッセイを用いて、またはSYBR™グリーンIを比較することにより、化合物29の有無にかかわらずdsRNA中の蛍光を比較する必要がある。それにもかかわらず、簡単な実装、直接測定および手頃な価格は、HTSプラットフォームとしての蛍光ベースの方法の使用に重要なポイントであり、中規模/大規模キャンペーン27、30、31で実施することが困難であるラジオ標識または結合アッセイと比較して。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者は利益相反を宣言しません。

Acknowledgments

この作品は、フンダサン・デ・アンパロ・ア・ペスキサ・ド・エスタド・デ・サンパウロ(FAPESP)、CEPID助成金2013/07600-3によって支援されました。 RSFに2018/05130-3、ASGに2016/19712-9を付与し、COGに対しては、クオルデナソン・デ・アペルフェイソアメント・デ・ペソアル・デ・ニヴェル・スーペリア(助成金88887.516153/2020-00)を付与します。マラリアベンチャーズの医薬品(MMV、www.mmv.org)と放置病治療薬イニシアチブ(DNDi、www.dndi.org)のサポート、パンデミックレスポンスボックスの設計、化合物の供給に感謝します。

Materials

Name Company Catalog Number Comments
5'-biotin-U30- ACUGGAGAUCGAUCUCCAGU -3' Dharmacon - 100 ng
96-well cell culture plates KASVI K12-096
96-well PCR Microplate KASVI K4-9610
96-well White Flat Bottom Polystyrene High Bind Microplate Corning 3922
AMC (7-amine-4-methylcoumarin) SIGMA-Aldrich 257370 100 mg
Aprotinin from bovine lung SIGMA-Aldrich A1153 10 mg
ATP JenaBioscience NU-1010-1G 1 g
Bz-nKRR-AMC International Peptides - 5 mg
Class II Biohazard Safety Cabinet ESCO
Diethyl pyrocarbonate SIGMA-Aldrich D5758 25 mL
DMSO (Dimethyl sulfoxide) SIGMA-Aldrich 472301 1 L
Dulbecco’s Modified Eagle Medium GIBCO 3760091
Fetal Bovine Serum GIBCO 12657-029 500 mL
G418 SIGMA-Aldrich A1720 Disulfate salt
Glycerol SIGMA-Aldrich G5516 1 L
HERACELL VIOS 160i CO2 incubator Thermo Scientific
MnCl2 tetrahydrate SIGMA-Aldrich 203734 25 g
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) Invitrogen M6494
NITD008 ≥98% (HPLC) Sigma-Aldrich SML2409 5 mg
qPCR system Mx3000P Agilent
Renilla luciferase Assay System PROMEGA E2810
SpectraMax Gemini EM Fluorescence Reader Molecular Devices
SpectraMax i3 Multi-Mode Detection Platform Molecular Devices
SpectraMax Plus 384 Absorbance Microplate Reader Molecular Devices
SYBR Green I Invitrogen S7563 500 µl
Triton X-100 SIGMA-Aldrich X100 500 mL
Trizma base SIGMA-Aldrich T1503 1 kg
Trypsin-EDTA Solution 1X SIGMA-Aldrich 59417-C 100 mL

DOWNLOAD MATERIALS LIST

References

  1. Zou, J., Shi, P. Y. Strategies for Zika drug discovery. Current Opinion in Virology. 35, 19-26 (2019).
  2. Cugola, F. R., et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 534 (7606), 267-271 (2016).
  3. de Araújo, T. V. B., et al. Association between microcephaly, Zika virus infection, and other risk factors in Brazil: Final report of a case-control study. The Lancet Infectious Diseases. 18 (3), 328-336 (2018).
  4. Cao-Lormeau, V. -M., et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. The Lancet. 387 (10027), 1531-1539 (2016).
  5. Pielnaa, P., et al. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology. 543, 34-42 (2020).
  6. Bollati, M., et al. Structure and functionality in flavivirus NS-proteins: Perspectives for drug design Flaviviral NS3 protein Flaviviral NS5 protein Protease Helicase Polymerase Methyltransferase Flavivirus protein structure Antivirals VIZIER Consortium. Antiviral Research. 87, 125-148 (2010).
  7. Fernandes, R. S., et al. Reporter replicons for antiviral drug discovery against positive single-stranded RNA viruses. Viruses. 12 (6), (2020).
  8. Fernandes, R. S., et al. Discovery of an imidazonaphthyridine and a riminophenazine as potent anti-Zika virus agents through a replicon-based high-throughput screening. Virus Research. 299, 198388 (2021).
  9. Noske, G. D., et al. Structural characterization and polymorphism analysis of the NS2B-NS3 protease from the 2017 Brazilian circulating strain of Yellow Fever virus. Biochimica et Biophysica Acta - General Subjects. 1864 (4), 129521 (2020).
  10. Godoy, A. S., et al. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase. Nature Communications. 8, 14764 (2017).
  11. Yin, Z., et al. An adenosine nucleoside inhibitor of dengue virus. Proceedings of the National Academy of Sciences. 106 (48), 20435-20439 (2009).
  12. Zhang, J. H., Chung, T. D. Y., Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of Biomolecular Screening. 4 (2), 67-73 (1999).
  13. Brecher, M., Zhang, J., Li, H. The flavivirus protease as a target for drug discovery. Virologica Sinica. 28 (6), 326-336 (2013).
  14. Noble, C. G., Seh, C. C., Chao, A. T., Shi, P. Y. Ligand-bound structures of the dengue virus protease reveal the active conformation. Journal of Virology. 86 (1), 438-446 (2012).
  15. Chen, X., et al. Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease. Cell Research. 26 (11), 1260-1263 (2016).
  16. Eyer, L., Nencka, R., de Clercq, E., Seley-Radtke, K., Růžek, D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antiviral Chemistry and Chemotherapy. 26, (2018).
  17. Xie, X., et al. Zika Virus Replicons for Drug Discovery. EBioMedicine. 12, 156-160 (2016).
  18. Pan, K. L., Lee, J. C., Sung, H. W., Chang, T. Y., Hsu, J. T. A. Development of NS3/4A protease-based reporter assay suitable for efficiently assessing hepatitis C virus infection. Antimicrobial Agents and Chemotherapy. 53 (11), 4825-4834 (2009).
  19. Khumthong, R., Angsuthanasombat, C., Panyim, S., Katzenmeier, G. In Vitro Determination of Dengue Virus Type 2 NS2B-NS3 Protease Activity with Fluorescent Peptide Substrates. Journal of Biochemistry and Molecular Biology. 35 (2), (2002).
  20. Ulanday, G. E. L., Okamoto, K., Morita, K. Development and utility of an in vitro, fluorescence-based assay for the discovery of novel compounds against dengue 2 viral protease. Tropical Medicine and Health. 44 (1), 1-10 (2016).
  21. Ong, I. L. H., Yang, K. L. Recent developments in protease activity assays and sensors. Analyst. 142 (11), 1867-1881 (2017).
  22. Eltahla, A. A., Lackovic, K., Marquis, C., Eden, J. S., White, P. A. A fluorescence-based high-throughput screen to identify small compound inhibitors of the genotype 3a hepatitis c virus RNA polymerase. Journal of Biomolecular Screening. 18 (9), 1027-1034 (2013).
  23. Eydoux, C., et al. A fluorescence-based high throughput-screening assay for the SARS-CoV RNA synthesis complex. Journal of Virological Methods. 288, 114013 (2021).
  24. Shimizu, H., et al. Discovery of a small molecule inhibitor targeting dengue virus NS5 RNA-dependent RNA polymerase. PLoS Neglected Tropical Diseases. 13 (11), 1-21 (2019).
  25. Sáez-Álvarez, Y., Arias, A., del Águila, C., Agudo, R. Development of a fluorescence-based method for the rapid determination of Zika virus polymerase activity and the screening of antiviral drugs. Scientific Reports. 9 (1), 1-11 (2019).
  26. Kocabas, F., Turan, R. D., Aslan, G. S. Fluorometric RdRp assay with self-priming RNA. Virus Genes. 50 (3), 498-504 (2015).
  27. Niyomrattanakit, P., et al. A fluorescence-based alkaline phosphatase-coupled polymerase assay for identification of inhibitors of dengue virus RNA-Dependent RNA polymerase. Journal of Biomolecular Screening. 16 (2), 201-210 (2011).
  28. Simeonov, A., Davis, M. I. Interference with Fluorescence and Absorbance Flow Chart Fluorescence Interferences. (Md). , 1-8 (2016).
  29. Genick, C. C., et al. Applications of biophysics in high- Throughput screening hit validation. Journal of Biomolecular Screening. 19 (5), 707-714 (2014).
  30. Smith, T. M., et al. Identifying initiation and elongation inhibitors of dengue virus RNA polymerase in a high-throughput lead-finding campaign. Journal of Biomolecular Screening. 20 (1), 153-163 (2015).
  31. Porecha, R., Herschlag, D. RNA radiolabeling. Methods in enzymology. 530, 255-279 (2013).

Tags

免疫学と感染、問題 176、
ジカウイルス複製阻害剤をスクリーニングする高スループット抗ウイルスアッセイ
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Fernandes, R. S., Noske, G. D.,More

Fernandes, R. S., Noske, G. D., Gawriljuk, V. O., de Oliveira, K. I. Z., Godoy, A. S., Mesquita, N. C. M. R., Oliva, G. High-throughput Antiviral Assays to Screen for Inhibitors of Zika Virus Replication. J. Vis. Exp. (176), e62422, doi:10.3791/62422 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter