Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biochemistry

Tryptophan-ANS FRET Eğitimi için Bir Rekombinant Ca2 +-ATPase N-domain'de Triptofan Kalıntısının Kimyasal Modifikasyonu

Published: October 9, 2021 doi: 10.3791/62770

Summary

ANS, Ca2+-ATPase rekombinant N etki alanına bağlanır. Floresan spektrumu, 295 nm dalga boyunda heyecanlanma üzerine FRET benzeri bir desen gösterir. Trp'nin NBS aracılı kimyasal modifikasyonu, N-etki alanının floresanını sorgular ve bu da Trp kalıntısı ile ANS arasında enerji transferi (FRET) olmamasına neden olur.

Abstract

Sarko/endoplazmik reticulum Ca2+-ATPase (SERCA), çeşitli konformasyonlarda kristalize edilmiş P tipi bir ATPazdır. Ayrıntılı işlevsel bilgiler yine de yalıtılmış rekombinant etki alanlarından elde edilebilir. Mühendislik (Trp552Leu ve Tyr587Trp) rekombinant nükleotid bağlayıcı etki alanı (N-domain), ligand bağlama üzerine floresan söndürme görüntüler. Dış florik florofor, yani 8-anilino-1-naftalin sülfonat (ANS), Arg, His, Ala, Leu ve Phe kalıntıları ile elektrostatik ve hidrofobik etkileşimler yoluyla nükleotid bağlayıcı bölgeye bağlanır. ANS bağlama, 370 nm'lik bir dalga boyunda (φ) heyecanlandığında floresan yoğunluğundaki artışla kanıtlanır. Bununla birlikte, 295 nm'lik bir heyecanlandığında, floresan yoğunluğundaki artış, N-domain iç floresanının söndürülmeleriyle birleştiğinde görünüyor. Floresan spektrumu, Föster rezonans enerji transferi (FRET) benzeri bir desen gösterir, böylece Tyr587Trp ve ANS arasındaki kısa mesafe (~20 Å) ile desteklenmiş gibi görünen bir Trp-ANS FRET çiftinin varlığını önerir. Bu çalışmada Trp-ANS FRET çiftinin N-bromosuccinimide (NBS) aracılı Trp kimyasal modifikasyonu (ve floresan söndürme) ile analizi açıklanmaktadır. Kimyasal olarak değiştirilmiş N-domain'de, ANS floresan 295 nm'lik bir φ'de heyecanlandığında arttı, 370 nm'lik bir φ'de heyecanlandığında olduğu gibi. Bu nedenle, Trp kalıntısının NBS aracılı kimyasal modifikasyonu, Trp ve ANS arasında FRET yokluğunu araştırmak için kullanılabilir. Trp floresan yokluğunda, ANS floresanında bir artış olmamalıdır. Proteinlerdeki Trp kalıntılarının NBS tarafından kimyasal olarak modifikasyonu, bağlı ANS'ye yakın trp kalıntıları arasındaki FRET'i incelemek için yararlı olabilir. Bu test muhtemelen diğer floroforları kullanırken de yararlı olacaktır.

Introduction

Föster rezonans enerji transferi (FRET), protein yapısı ve fonksiyon çalışmalarında bağlanma veya etkileşim sonrası moleküler yapılar arasındaki mesafeyi belirlemek için standart bir teknik haline gelmiştir1,2,3,4. P tipi ATPases'te FRET, sarkoko-endoplazmik reticulum Ca2+-ATPase (SERCA)2, 5,6,7,8,örneğin katalitik döngü sırasındaki yapısal dalgalanmaların yapısını ve işlevini araştırmak için FRET7tarafından tüm proteinde analiz edilmiştir.

FRET donörleri çeşitlidir ve küçük floresan (dışsal) moleküllerden floresan proteinlere9,10arasında değişmektedir. Triptofan (Trp) kalıntıları (floresanları nedeniyle) protein amino asit dizilerindeki yapısal değişiklikleri tanımlamak için yararlıdır11,12. Trp'nin floresan yoğunluğu önemli ölçüde çevresindeki çevrenin polaritesine bağlıdır13,14. Ligand bağlama genellikle proteinlerde/enzimlerde yapısal yeniden düzenleme oluşturur15,16. Trp protein bağlama bölgesinde veya yakınında bulunuyorsa, yapısal dalgalanmalar trp'nin sulu ortama maruz kalma derecesini sıklıkla etkiler13,14; böylece, polaritedeki değişiklik Trp floresan yoğunluğunun söndürülme ile sonuçlanır13,14. Bu nedenle, Trp'nin floresan özelliği enzimler için ligand bağlama çalışmaları yapmak için yararlıdır. Diğer fiziksel olaylar da Trp floresan söndürme yol açabilir17,18,19,20, örneğin, FRET ve orta polaritede değişiklikler. Trp'nin heyecanlı durumundan bir florofora enerji transferi, örneğin proteinlerdeki küçük ligandların benzeşim tayini gibi potansiyel uygulamalara da sahiptir21. Nitekim Trp, FRET çalışmalarında22, 23 , 24,örneğin terbiyum (Tb3+) FRET çalışmalarında floresan donör olarak kullanılmaktadırılmıştır,Bir Trp kalıntısı tb3+ 25, 26,27'yeenerji transferi için anten olarak sıklıkla kullanılmaktadır. Trp, protein yapısındaki doğal constitutive karakteri nedeniyle diğer FRET donörlerine göre çeşitli avantajlar sergiler, bu da çalışılan proteinin işlevini / yapısını etkileyebilecek hazırlık süreçlerine olan ihtiyacı ortadan kaldırır24. Bu nedenle, radyatif bozunmaların tanımlanması (protein yapısal yeniden düzenlemelerinin neden olduğu orta polaritedeki enerji transferi ve değişiklikler) protein yapısal çalışmalarında ligand bağlanması ile ilgili doğru sonuçlar çıkarmak için önemlidir13,14,19,28.

Protein yapısal çalışmalarında, ekstrinsik bir florofor, yani 8-anilino-1-naftalin sülfonat (ANS), öncelikle protein katlama / açma ile ilgili deneylerde kullanılmıştır28,29. ANS, genellikle31, 32,33 substratlarının bağlama bölgelerinde, doğal durumdaki proteinlere / enzimlerebağlanır; ANS floresan kuantum veriminde (ΦF) bir artış (yani, floresan yoğunluğunda bir artış), ANS'nin Arg ile uygun etkileşimleri ve hidrofobik ceplerdeki kalıntıları 34,35 , 36,37 meydana geldiğindeproteinin φ=370nm'de heyecan verici olmasıyla indüklenmektedir. Çeşitli çalışmalarda, Trp kalıntıları (donörler) ve ANS (kabul eden) arasında FRET (280-295 nm içinde heyecan verici olduğunda) meydana gelmesi bildirilmiştir, aşağıdakilere dayanmaktadır: 1) Trp floresan emisyon spektrumunun ve ANS'nin uyarma spektrumunun çakışması, 2) enerji transferi için bir veya daha fazla Trp kalıntısı ile ANS arasında uygun bir mesafenin tanımlanması, 3) protein ceplerine bağlandığında yüksek ANS kuantum verimi ve 4) ANS 3, 17,27,37,38varlığında proteinin floresan spektrumunda karakteristik FRET deseni.

Son zamanlarda, SERCA ve diğer P tipi ATPases'teki nükleotid bağlayıcı etki alanına (N-domain) ligand bağlama, mühendislik rekombinant N-domains40 , 41 , 42,43,44,45,46kullanılarak araştırılmıştır. SERCA N-domain moleküler mühendisliği, tek Trp kalıntısını (Trp552Leu) nükleotid bağlayıcı bölgeye yakın olan daha dinamik bir yapıya (Tyr587Trp) taşımak için kullanılmıştır, burada floresan varyasyonları (söndürme) ligand bağlama34üzerindeki yapısal değişiklikleri izlemek için kullanılabilir. Deneysel sonuçlar, ANS'nin (ATP olarak) saflaştırılmış rekombinant SERCA N-domain34'tekinükleotid bağlama bölgesine bağlandığını göstermiştir. İlginçtir ki, ANS floresan 295 nm'lik bir φ'de heyecanlanma üzerine N-etki alanına bağlanınca artarken, N-etki alanının iç floresanları34azalır , böylece bir Trp-ANS FRET çiftinin oluşumunu öneren bir FRET deseni üretir.

Modifiye proteinlerin absorbans tahlilleri ile47 proteinlerindeki Trp kalıntılarının içeriğini belirlemek için NBS kullanımı önerilmiştir. NBS, Trp'nin son derece emici indole grubunu daha az emici oksidol47,48ile değiştirir. Bu, Trp floresan özelliğinin kaybına (söndürme) neden olur40. Bu nedenle, Trp kalıntılarının NBS aracılı kimyasal modifikasyonu, FRET hipotez edildiğinde Trp'nin (donör olarak) rolünü tanımlamak için bir test olarak kullanılabilir.

Bu protokol, SERCA'nın mühendislik rekombinant N-domain'indeki tek Trp kalıntısının NBS tarafından protein modeli olarak kimyasal olarak değiştirilmesini tanımlamaktadır. Deneysel sonuçlar, ANS floresan yoğunluğunun kimyasal olarak NBS modifiye edilmiş N-domain34'te hala arttığını göstermektedir . Bu nedenle, test, N etki alanı34 , 40,49'a bağlandığında Trp kalıntısı ve ANS arasında FRET yokluğunu göstermek için yararlıdır. Bu nedenle, bu test (Trp'nin NBS kimyasal modifikasyonu) Trp-ANS FRET çiftinin proteinlerde varlığını kanıtlamada yararlıdır.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. ANS ve SERCA N-domain etkileşiminin belirlenmesi (silikoda)

  1. Tercih edilen protein modelleme yazılımı50kullanarak moleküler modelleme ile proteinin (SERCA N-domain) üç boyutlu (3D) bir yapısını oluşturun.
  2. Tercih edilen moleküler yapı yazılımı51kullanarak nükleotid bağlayıcı bölgeyi oluşturan amino asit kalıntılarını tanımlayın ve Arg ve Lys kalıntılarının varlığını belirleyin35; bunlar ANS bağlama ve floresan yoğunluğunu (kuantum verimi) artırmak için gereklidir.
  3. ATP,floresan izotiyosiyanat (FITC) (nükleotid bağlayıcı bölgeyi etiketleyenLys515 ile birlikte bir kovalent bağ oluşturur) ve nükleotid bağlayıcı bölgede amino asit kalıntıları ile ANS etkileşimlerini belirlemek için moleküler yerleştirme (tercih edilen yerleştirme yazılımını kullanarak)52,53,54 gerçekleştirin (Şekil 1).
  4. Tercih edilen yazılımdaki ölçüm aracını kullanarak Trp kalıntısı ile bağlı ANS arasındaki moleküler mesafeyi (Å) hesaplayın.
  5. Etkileşimin kararlılığını belirlemek için ANS-N-domain kompleksinin moleküler dinamik simülasyonunungerçekleştiriliyor 52,54. Daha sonra, kompleksin stabilitesi doğrulandığında in vitro deneyleri gerçekleştirin.

2. Rekombinant N-domain'in ifadesi ve saflaştırılması

  1. N-domain40için gen kodlamasını sentezle.
  2. N-domain40için kodlayan sentetik geni içeren plazmid tasarlayın ve inşa edin.
  3. Tasarlanmış rekombinant N etki alanı olan benzeşim kromatografisi (Ni-NTA) ile ifade edin ve arındırın. Saflığı belirlemek için saflaştırılmış proteinin SDS PAGE'ini gerçekleştirin (Şekil 2)40.
  4. N-domain yok olma katsayısı (ε= 11.960 M -1 ·cm -1)40ile 280nm'lik emiciliği inceleyerek protein konsantrasyonunun belirlenmesi.

3. ANS ve N alanlı floresan yoğunluğu değişikliklerine dayanarak ANS-N etki alanı kompleksinin oluşumunu izleyin.

  1. N,N-dimetilformamid içinde bir ANS stok çözümü hazırlayın.
    1. Az miktarda (1-5 mg) ANS tartın ve N, N-dimetilformamid,örneğin, 3,2mg (10,69 mM son konsantrasyon) hacminin 1 mL'sinde çözün.
    2. N, N-dimetilformamid'deki ANS çözeltisini kullanarak 100μMANS sulu stok çözeltisi hazırlayın, örneğin, 10,69 mM ANS çözeltisinin 9,4 μL'sini 990,6 μL 50 mM fosfat tamponuna ekleyin ve 1 mL'lik son bir hacim elde edin.
    3. Çözeltileri 15 s için 3 - 5 kez girdaplayarak karıştırın.
      NOT: Aşağıdaki denemede, yalnızca ANS sulu stok çözümünü kullanın. Deneyleri başlatmadan önce ANS sulu stok çözümünü yeni hazırlayın.
  2. NBS stok çözeltisini N,N-dimetilformamid olarak hazırlayın.
    1. Az miktarda (1-5 mg) NBS tartın ve 1 mL N,N-dimetilformamid, örneğin, 1 mL'de 5.3 mg (29.78 mM son konsantrasyon) çözün.
    2. N, N -dimetilformamiddeki NBS çözümünü kullanarak 1mMNBSsulu stok çözeltisi hazırlayın, örneğin, 29,78 mM NBS çözeltisinin 3,36 μL'sini pH 8,0 ile 96,64 μL 50 mM fosfat tamponuna ekleyerek son hacim 0,1 mL'yi elde edin.
    3. Çözeltileri 15 s için 3 - 5 kez girdaplayarak karıştırın.
      NOT: Deneylere başlamadan önce NBS sulu stok çözümünü yeni hazırlayın.
  3. ANS ile N-etki alanını titrat ve floresan spektrumunu 25 °C'de φ=295 nm'de ekscitasyonla kaydedin.
    1. Floresan spektrum taban çizgisini elde edin.
      1. 1 mL floresan kuvars cuvette içine pH 8.0 ile 50 mM fosfat tamponunun 1 mL'lik bir kısmını yerleştirin.
      2. Hücreyi spektrofluorometrenin termo-belirtilen hücre odasına (25 °C) yerleştirin ve ekscitasyon φ'yi 295 nm olarak ayarlayın.
      3. Floresan spektrumu (305 - 550 nm) kaydedin.
        NOT: Boş numune görevi gören pH 8.0 ile 50 mM fosfat tamponunun floresan spektrumu, elde edilen tüm floresan spektrumlarından çıkarılır.
    2. N-etki alanının iç floresan spektrumu edinin.
      1. 900 μL 50 mM fosfat tamponu pH 8.0 ile floresan kuvars cuvette yerleştirin.
      2. 1 mL son hacimde 1 μM N alan adı son konsantrasyonu elde etmek için 100 μL N etki alanı (10 μM) süspansiyon ekleyin.
      3. Çözeltinin homojenliğini sağlamak için bir mikropipette kullanarak 20 kez hafifçe homojenize edin.
        NOT: Protein, yüksek kaliteli iç floresan spektrumu elde etmek için taze arındırılmalıdır, örneğin, saflaştırılmış rekombinant N-domain saflaştırmadan sonra sadece bir hafta kullanılabilir.
      4. Hücreyi spektrofluorometrenin termo-belirtilen hücre odasına (25 °C) yerleştirin ve ekscitasyon φ'yi 295 nm olarak ayarlayın.
      5. N-domain iç floresan spektrumu (305-550 nm) kaydedin.
    3. ANS ekleyin ve φ=295 nm'de heyecanlanarak floresan spektrumunu elde edin.
      1. 0,2 μM ANS son konsantrasyon elde etmek için askıya alınan N etki alanına (1 μM) 100 μM ANS sulu stok çözeltisi 2 μL aliquot ekleyin.
      2. Çözeltinin homojenliğini sağlamak için bir mikropipette kullanarak 20 kez hafifçe homojenize edin.
      3. Hücreyi spektrofluorometrenin termo-kararlı hücre odasına (25 °C) yerleştirin ve ekscitasyonu φ 295 nm olarak ayarlayın.
      4. Floresan spektrumu (305-550 nm) kaydedin.
      5. ANS eklemelerini ve floresan spektrum kaydını 1:1 molar ilişki ANS:N-domain'in üzerinde tekrarlayın.
      6. Uygun yazılımı kullanarak her spektrumdan boş spektrumu çıkarın.
      7. Tüm spektrumları tek bir grafikte çizin.
      8. Spektrumun FRET benzeri bir desen oluşturup oluşturmadığını belirleyin. ANS-N-domain floresan spektrumu FRET benzeri bir desen oluşturur (Şekil 3A).

4. NBS ile Trp kimyasal modifikasyonu ile N-domain iç floresan titrasyonu.

  1. 3.3.1 ve 3.3.2 adımlarını yineleyin.
  2. 1 μM NBS'lik son konsantrasyonu elde etmek için askıya alınan N-etki alanına (1 μM) 1 mM NBS sulu stok çözeltisinin 1 μL'lik bir aliquotunu ekleyin.
  3. Çözeltinin homojenliğini sağlamak için 20 kez bir mikropipette kullanarak hafifçe homojenize edin.
  4. Hücreyi spektrofluorometrenin termo-kararlı hücre odasına (25 °C) yerleştirin ve ekscitasyonu φ 295 nm olarak ayarlayın.
  5. Floresan spektrumu (305-550 nm) kaydedin (Şekil 3B).
  6. Minimum N-domain iç floresan söndürme gözlenene kadar NBS ilavesini ve floresan spektrum kaydını tekrarlayın40. N etki alanında, bu genellikle 5-6 NBS / N-domain40molar oranında gerçekleşir.
    NOT: NBS, N-etki alanının iç floresanını hızla (<5 s) sorgular; floresan yoğunluğunda bir azalma gözlenir. NBS diğer amino asit kalıntıları ile de reaksiyona girebileceği için hemen bir sonraki adıma geçin47.
  7. Uygun yazılımı kullanarak her spektrumdan boş spektrumu çıkarın.
  8. Tüm spektrumları tek bir grafikte çizin (Şekil 3B).

5. 25 °C'de floresan spektrumu kaydederek NBS modifiye N-domain'i ANS ile titrate edin.

  1. Adım 4'te oluşturulan NBS değiştirilmiş N etki alanını kullanarak Adım 3.3.3'i gerçekleştirin.
  2. Uygun yazılımı kullanarak her spektrumdan boş spektrumu çıkarın.
  3. Tüm spektrumları tek bir grafikte çizin (Şekil 3C).
  4. Oluşturulan floresan spektrumu (Şekil 3C) FRET oluşumunu destekler veya çürütür, yani FRET meydana geldiğinde, ANS floresan artmaz ve bunun tersi de geçerli olur.

6. φ=370 nm'de heyecanlanarak kimyasal olarak değiştirilmiş N-etki alanına ANS bağlanmasının kanıtı.

  1. Adım 4'te oluşturulan NBS değiştirilmiş N etki alanını kullanarak ancak φ ekscitasyonunu 370 nm olarak değiştirerek Adım 3.3.3'i gerçekleştirin.
  2. Uygun yazılımı kullanarak her spektrumdan boş spektrumu çıkarın.
  3. Tüm spektrumları tek bir grafikte çizin (Şekil 3D).
  4. ANS floresan yoğunluğundaki artışı gözlemleyerek N etki alanına ANS bağlamasını onaylayın. N-etki alanına ANS bağlaması, φ=370 nm 'de heyecanlandığınızda floresan artışı gösterir (Şekil 3D). Kontrol olarak, pH 8.0 ile 50 mM fosfat tamponunda ANS'nin floresan spektrumu 295 ve 370 nm'de heyecan verici elde edildi(Şekil 4, videoda gösterilmedi).
    NOT: Kimyasal modifikasyon için gerekli olan NBS:Trp'nin stoichiometrik ilişkisi, trp kalıntılarının çalışma aşamasındaki proteine gömülme dereceine bağlıdır46,47,55,56. Bu nedenle, önceden NBS:protein/(Trp) molar oranının belirlenmesi önerilir.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

Moleküler yerleştirme, ANS'nin elektrostatik ve hidrofobik etkileşimler yoluyla N-etki alanının nükleotid bağlayıcı bölgesine bağlanmasını gösterir (Şekil 1). Trp kalıntısı ile ANS (nükleotid bağlayıcı bölgeye bağlı) arasındaki moleküler mesafe (20 Å) FRET oluşumunu destekler (Şekil 1). Tasarlanan (mühendislik) rekombinant N-domain, benzeşim kromatografisi (Şekil 2) ile yüksek saflıkta elde edildi ve floresan deneyleri için uygundu. ANS-N-domain kompleksinin floresan spektrumu, φ=295 nm(Şekil 3A)adresindeki heyecan üzerine FRET benzeri bir desen görüntüledi. Trp kalıntısının NBS tarafından kimyasal modifikasyonu, N-etki alanının iç floresanının söndürülmesine yol açmıştır (Şekil 3B). Kimyasal olarak NBS modifiye edilmiş N-etki alanında, deneysel sonuçlar ANS floresansının φ=295 nm 'de(Şekil 3C)heyecanlanma üzerine arttığını göstermektedir. Bu nedenle, ANS'nin φ=295 nm'de doğrudan çıkarılması, daha önce öneren28. Kimyasal olarak değiştirilmiş N-etki alanına ANS bağlaması, φ=370 nm(Şekil 3D)heyecanlandığında floresanında bir artışla kanıtlanır. Bu nedenle, FRET, nükleotid bağlayıcı bölgeye bağlı Trp kalıntısı ile ANS arasında oluşmaz.

Figure 1
Şekil 1: ANS'nin Ca2+-ATPase N-domain'in nükleotid bağlayıcı bölgesine moleküler yerleştirme. ANS moleküler yerleştirme AutoDock Vina yazılımı (http://vina.scripps.edu/) ve N-domain40'ınoluşturulmuş bir 3D modeli kullanılarak gerçekleştirildi. Tasarlanan N-domain, Trp552Leu ve Tyr587Trp mutasyonlarını içerir (mavi renkle gösterilir). Nükleotid bağlayıcı bölgeyi oluşturan amino asit kalıntıları toplar ve çubuklar olarak temsil edilir ve turuncu ile vurgulanır. Bu rakam Springer Nature: Springer, Journal of Fluorescence 'dan izin atılmış olarakdeğiştirilmiştir. Telif Hakkı (2020)34. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.

Figure 2
Şekil 2: SDS−PAGE of the engineered rekombinant Ca2+-ATPase N-domain. N-etki alanı kromatografik bir sütun kullanılarak benzeşim saflaştırmasına tabi tutuldu. Emilime karşılık gelen fraksiyonlar (φ=280 nm'de) zirveler SDS−PAGE'e tabi tutuldu ve Coomassie mavisi boyama ile görselleştirildi. ~30 kDa His etiketli N-domain, 27 kDa N-domain Ca2+-ATPase ve 3 kDa poly-His etiketi ile oluşturulur. Ca2+-ATPase N- etki alanı saflığının ImageJ yazılımı (https://imagej.nih.gov/ij/download.html) kullanılarak densitometri tarafından% ≥95 olduğu belirlendi. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.

Figure 3
Şekil 3: N-etki alanındaki Trp kalıntısının NBS aracılı kimyasal modifikasyonu, nükleotid bağlayıcı bölgeye bağlı Trp ve ANS arasındaki FRET'i çürütür. A. φ=295 nm'de heyecanlanma üzerine ANS-N-domain kompleksinin FRET deseni. ANS eklendi (μM'deki son konsantrasyon: Spectra a, 0; b, 0.2; c, 0.4; d, 0.6; e, 0.8; f, 1.0; g, 1.2; ve h, 1.4) askıya alınan N etki alanına (1 μM). B. N-etki alanının NBS tarafından floresan olarak söndürülme (μM'de NBS konsantrasyonu: a, 0; b, 1; c, 2; d, 3; e, 4; ve f, 6). N-domain iç floresan φ=295 nm'de ekscitasyonda gözlendi. C. φ=295 nm'de heyecanlandıktan sonra kimyasal olarak değiştirilmiş N-etki alanına bağlı ANS'nin floresan spektrumu. Deneysel koşullar A'dakigibidir. Şekil A, B ve C Springer Nature: Springer, Journal of Fluorescence'dan izin atılmıştır. Telif Hakkı (2020)34. D. φ=370 nm'de ekscitasyon üzerine kimyasal olarak değiştirilmiş N-etki alanına bağlı ANS'nin floresan spektrumu. N-etki alanı 1 ml 50 mM fosfat tamponunda (pH 8.0) ve NBS aliquots'ta askıya alındı ve A (ANS) ve B'de (NBS) açıklandığı gibi ANS buna göre eklendi. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.

Figure 4
Şekil 4: ANS floresan spektrumu. pH 8.0 ile 50 mM fosfat tamponunda ANS (1.4 μM) 295 ve 370 nm'de heyecanlandı; spektra sırasıyla siyah ve mavi olarak sunulur. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

ANS-N-domain kompleksinin floresan spektrumu, 295 nm'lik bir φ'de heyecanlandığında FRET benzeri bir desen gösterirken, Trp kalıntısı ile ANS arasındaki moleküler mesafe (20 Å) FRET oluşumunu destekliyor gibi görünmektedir (Şekil 1). NBS tarafından TRP kimyasal modifikasyonu daha az floresan N-domain ile sonuçlanır(Şekil 3B, Spektrum f); bu nedenle, enerji transferi mümkün değildir. ANS floresan spektrumu, 295 nm(Şekil 3A ve C)φ'de heyecanlandığında değiştirilmemiş N-etki alanınınkine benzer.

Bu nedenle, ANS'nin 295 nm'lik bir hızda doğrudan çıkarılması, diğer yazarlar tarafından önerilen mekanizma ile aynı fikirde olan ATP bağlama bölgesine (Şekil 3C) bağlandığında ANS floresanının ana kaynağıdır28. Bu nedenle, Trp kalıntısından bağlı ANS'ye FRET, N-domain-ANS kompleksinde oluşmaz. Bununla birlikte, diğer proteinlerdeki Trp kalıntılarının NBS aracılı kimyasal modifikasyonu, Trp ve ANS arasındaki FRET'i destekler, örneğin Neurospora crassa49'danksiloz redüktaz enzimlerinde, maya mitokondri 58 ve termolysin59'danF1-ATPase'nin α alt birliği .

Test, His ve Arg kalıntılarını içeren hidrofobik ceplere (bağlayıcı bölgeler) sahip proteinlerde / enzimlerde iyi performans gösterir, çünkü bunlar ANS etkileşiminin stabilizasyonuna katkıda bulunur. Ek olarak, bu tür proteinler ideal olarak protein yüzeyinde bulunan, yani NBS40 , 41,49ile hızlı reaksiyon için erişilebilir tek bir Trp kalıntısı içermelidir.

Alternatif olarak, Trp-ANS FRET çiftini proteinlerde analiz etmek için, protein/ enzim bağlama bölgesinde ANS etkileşimini engellemek için asetilasyon ve özlü kontalasyon ile kalıntılarının kimyasal modifikasyonukullanılabilir 60. Trp kalıntısının mutasyonla silinmesi, FRET'i analiz etmek için başka bir stratejidir. Ancak, bu zaman alıcı olabilir ve yapılar yapısal farklılıklar gösterebilir, böylece ligand bağlama61'ietkileyebilir. Benzer şekilde, Arg ve Ligand bağlayıcı sahadaki kalıntılarının mutasyonu öngörülemeyen yapısal değişikliklere neden olabilir, böylece mutasyona uğramış protein deneyler için uygun hale getirebilir62.

Trp kalıntısı ile ilgili olarak, NBS-kimyasal modifikasyon testinin performansı aşağıdaki durumlarda sınırlı olacaktır: 1) Trp kalıntısı iyi katlanmış ve kompakt bir proteinin çekirdeğine derinlemesine gömülürse; NBS moiety, büyük boşlukların olmaması nedeniyle Trp kalıntısına erişemeyeceğinden41,48,63, 2) Trp kalıntıları membran gömülü yapılarda bulunursa (trans NBS'nin sulu karakteri hidrofobik ortama girmesini önleyeceğinden α-sarmal) protein yapısı birden fazla Trp kalıntısı içeriyorsa 32,56,64, 3) erişilebilirlik ve fizikokimyasal ortamdaki farklılıklar büyük olabileceğinden, Böylece, proteinlere ans bağlanması esas olarak hidrofobik etkileşimden kaynaklanıyorsa, bir Trp kalıntısına floresan sinyal değişiminin atanması zorlaştırılıyor32, 65,66,67ve e) statikse Trp'nin söndürülmesi, örneğin oksijenvarlığında meydana gelir 68.

Trp kalıntılarının NBS aracılı kimyasal modifikasyonu, Trp ve ANS arasında proteinlere/enzimlere bağlı FRET'i incelemek için hızlı ve kolay bir test gibi görünmektedir. NBS yerine diğer Trp-modifiye reaktifleri kullanılabilir, örneğin, hidroksi-5-nitrobenzil bromür (HNB)69,70. Son olarak, test, önerilen FRET trp çiftlerinin diğer flurophores21ile tespiti için uygulanabilir.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

Yazarlar rakip finansal çıkarları olmadığını beyan ederler.

Acknowledgments

Bu çalışma kısmen FAI-UASLP hibe numarası C19-FAI-05-89.89 ve CONACYT hibe numarası 316463 (Apoyos a la Ciencia de) tarafından finanse edildi. Frontera: Fortalecimiento y Mantenimiento de Infraestructuras de Investigación de Uso Común y Capacitación Técnica 2021). Yazarlar julian E. Mata-Morales'in teknik yardımına video baskıda teşekkür ediyorlar.

Materials

Name Company Catalog Number Comments
Acrylamide Bio-Rad 1610107 SDS-PAGE
Ammonium persulfate Bio-Rad 1610700 SDS-PAGE
8-Anilino-1-naphthalenesulfonic acid Sigma-Aldrich A1028 Fluorophore
Bis-acrylamide Bio-Rad 1610125 SDS-PAGE
N-Bromosuccinimide Sigma-Aldrich B81255 Chemical modification
N,N-dimethylformamide J.T. Baker 9213-12 Stock solution preparation
Fluorescein isothiocyanate Sigma-Aldrich F7250 Chemical fluorescence label
Fluorescence cuvette Hellma Z801291 Fluorescence assay
Fluorescence Spectrofluorometer Shimadzu RF 5301PC Fluorescence assay
HisTrap™ FF GE Healtcare 11-0004-59 Protein purification
IPTG, Dioxane free American Bionalytical AB00841-00010 Protein expression
Imidazole Sigma-Aldrich I5513-25G Protein purification
LB media Fisher Scientific 10000713 Cell culture
Pipetman L P10L Gilson FA10002M Fluorescence assay
Pipetman L P100L Gilson FA10004M Fluorescence assay
Pipetman L P200L Gilson FA10005M Fluorescence assay
Pipetman L P1000L Gilson FA10006M Fluorescence assay
Pipetman L P5000L Gilson FA10007 Fluorescence assay
Precision plus std Bio-Rad 1610374 SDS-PAGE
Sodium dodecyl sulphate Bio-Rad 1610302 SDS-PAGE
Sodium phosphate dibasic J.T. Baker 3828-19 Buffer preparation
Sodium phosphate monobasic J.T. Baker 3818-01 Buffer preparation
Syringe filter 0.2 um Millipore GVWP04700 Solution filtration
Temed Bio-Rad 1610801 SDS-PAGE
Tris Bio-Rad 1610719 SDS-PAGE

DOWNLOAD MATERIALS LIST

References

  1. Munishkina, L. A., Fink, A. L. Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1768 (8), 1862-1885 (2007).
  2. Dong, X., Thomas, D. D. Time-resolved FRET reveals the structural mechanism of SERCA-PLB regulation. Biochemical and Biophysical Research Communications. 449 (2), 196-201 (2014).
  3. Szilvay, G. R., Blenner, M. A., Shur, O., Cropek, D. M., Banta, S. A FRET-based method for probing the conformational behavior of an intrinsically disordered repeat domain from Bordetella pertussis adenylate cyclase. Biochemistry. 48 (47), 11273-11282 (2009).
  4. Sun, Y., Wallrabe, H., Booker, C. F., Day, R. N., Periasamy, A. Three-color spectral FRET microscopy localizes three interacting proteins in living cells. Biophysical Journal. 99 (4), 1274-1283 (2010).
  5. Cornea, R. L., et al. High-throughput FRET assay yields allosteric SERCA activators. Journal of Biomolecular Screening. 18 (1), 97-107 (2013).
  6. Gruber, S. J., et al. Discovery of enzyme modulators via high-throughput time-resolved FRET in living cells. Journal of Biomolecular Screening. 19 (2), 215-222 (2014).
  7. Dyla, M., et al. Dynamics of P-type ATPase transport revealed by single-molecule FRET. Nature. 551 (7680), 346-351 (2017).
  8. Corradi, G. R., Adamo, H. P. Intramolecular fluorescence resonance energy transfer between fused autofluorescent proteins reveals rearrangements of the N- and C-terminal segments of the plasma membrane Ca2+ pump involved in the activation. The Journal of Biological Chemistry. 282 (49), 35440-35448 (2007).
  9. Piston, D. W., Kremers, G. -J. Fluorescent protein FRET: The good, the bad and the ugly. Trends in Biochemical Sciences. 32 (9), 407-414 (2007).
  10. Ma, L., Yang, F., Zheng, J. Application of fluorescence resonance energy transfer in protein studies. Journal of Molecular Structure. 1077, 87-100 (2014).
  11. Chen, Y., Barkley, M. D. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 37 (28), 9976-9982 (1998).
  12. Zelent, B., et al. Tryptophan fluorescence yields and lifetimes as a probe of conformational changes in human glucokinase. Journal of Fluorescence. 27 (5), 1621-1631 (2017).
  13. Callis, P. R. Binding phenomena and fluorescence quenching. I: Descriptive quantum principles of fluorescence quenching using a supermolecule approach. Journal of Molecular Structure. 1077, 14-21 (2014).
  14. Callis, P. R. Binding phenomena and fluorescence quenching. II: Photophysics of aromatic residues and dependence of fluorescence spectra on protein conformation. Journal of Molecular Structure. 1077, 22-29 (2014).
  15. Agarwal, P. K., Geist, A., Gorin, A. Protein dynamics and enzymatic catalysis: Investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A. Biochemistry. 43 (33), 10605-10618 (2004).
  16. Deng, H., Zhadin, N., Callender, R. Dynamics of protein ligand binding on multiple time scales: NADH binding to lactate dehydrogenase. Biochemistry. 40 (13), 3767-3773 (2001).
  17. van de Weert, M. Fluorescence quenching to study protein-ligand binding: common errors. Journal of fluorescence. 20 (2), 625-629 (2010).
  18. van de Weert, M., Stella, L. Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. Journal of Molecular Structure. 998 (1-3), 144-150 (2011).
  19. Stella, L., van de Weert, M., Burrows, H. D., Fausto, R. Fluorescence spectroscopy and binding: Getting it right. Journal of Molecular Structure. 1077, 1-3 (2014).
  20. Credi, A., Prodi, L. Inner filter effects and other traps in quantitative spectrofluorimetric measurements: Origins and methods of correction. Journal of Molecular Structure. 1077, 30-39 (2014).
  21. Lee, M. M., Peterson, B. R. Quantification of small molecule-protein interactions using FRET between tryptophan and the pacific blue fluorophore. ACS Omega. 1 (6), 1266-1276 (2016).
  22. Zhang, Y., et al. Comparison of FÖrster-resonance-energy-transfer acceptors for tryptophan and tyrosine residues in native proteins as donors. Journal of Fluorescence. 23 (1), 147-157 (2013).
  23. Xie, Y., Maxson, T., Tor, Y. Fluorescent ribonucleoside as a FRET acceptor for tryptophan in native proteins. Journal of the American Chemical Society. 132 (34), 11896-11897 (2010).
  24. Ghisaidoobe, A. B. T. T., Chung, S. J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on Förster resonance energy transfer techniques. International Journal of Molecular Sciences. 15 (12), 22518-22538 (2014).
  25. Goryashchenko, A. S., et al. Genetically encoded FRET-sensor based on terbium chelate and red fluorescent protein for detection of caspase-3 activity. International Journal of Molecular Sciences. 16 (7), 16642-16654 (2015).
  26. Arslanbaeva, L. R., et al. Induction-resonance energy transfer between the terbium-binding peptide and the red fluorescent proteins DsRed2 and TagRFP. Biophysics. 56 (3), 381-386 (2011).
  27. Di Gennaro, A. K., Gurevich, L., Skovsen, E., Overgaard, M. T., Fojan, P. Study of the tryptophan-terbium FRET pair coupled to silver nanoprisms for biosensing applications. Physical Chemistry Chemical Physics. 15 (22), 8838-8844 (2013).
  28. Hawe, A., Poole, R., Jiskoot, W. Misconceptions over Förster resonance energy transfer between proteins and ANS/bis-ANS: Direct excitation dominates dye fluorescence. Analytical Biochemistry. 401 (1), 99-106 (2010).
  29. Ghosh, U., Das, M., Dasgupta, D. Association of fluorescent probes 1-anilinonaphthalene-8-sulfonate and 4,4´-dianilino-1,1´-binaphthyl-5,5´-disulfonic acid with T7 RNA polymerase. Biopolymers. 72 (4), 249-255 (2003).
  30. Vreuls, C., et al. Guanidinium chloride denaturation of the dimeric Bacillus licheniformis BlaI repressor highlights an independent domain unfolding pathway. The Biochemical Journal. 384, 179-190 (2004).
  31. Möller, M., Denicola, A. Study of protein-ligand binding by fluorescence. Biochemistry and Molecular Biology Education. 30 (5), 309-312 (2002).
  32. Chang, L., Wen, E., Hung, J., Chang, C. Energy transfer from tryptophan residues of proteins to 8-anilinonaphthalene-1-sulfonate. Journal of Protein Chemistry. 13 (7), 635-640 (1994).
  33. Togashi, D. M., Ryder, A. G. A fluorescence analysis of ANS bound to bovine serum albumin: Binding properties revisited by using energy transfer. Journal of Fluorescence. 18 (2), 519-526 (2008).
  34. Dela Cruz-Torres, V., Cataño, Y., Olivo-Rodríguez, M., Sampedro, J. G. ANS interacts with the Ca2+-ATPase nucleotide binding site. Journal of Fluorescence. 30 (3), 483-496 (2020).
  35. Gasymov, O. K., Glasgow, B. J. ANS fluorescence: Potential to augment the identification of the external binding sites of proteins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1774 (3), 403-411 (2007).
  36. Matulis, D., Lovrien, R. 1-anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophysical Journal. 74 (1), 422-429 (1998).
  37. Samukange, V., Yasukawa, K., Inouye, K. Interaction of 8-anilinonaphthalene 1-sulphonate (ANS) and human matrix metalloproteinase 7 (MMP-7) as examined by MMP-7 activity and ANS fluorescence. Journal of Biochemistry. 151 (5), 533-540 (2012).
  38. Qin, J., et al. Selective and sensitive homogenous assay of serum albumin with 1-anilinonaphthalene-8-sulphonate as a biosensor. Analytica Chimica Acta. 829, 60-67 (2014).
  39. Malik, A., Kundu, J., Karmakar, S., Lai, S., Chowdhury, P. K. Interaction of ANS with human serum albumin under confinement: Important insights and relevance. Journal of Luminescence. 167, 316-326 (2015).
  40. Páez-Pérez, E. D., De La Cruz-Torres, V., Sampedro, J. G. Nucleotide binding in an engineered recombinant Ca2+-ATPase N-domain. Biochemistry. 55 (49), 6751-6765 (2016).
  41. Sampedro, J. G., Nájera, H., Uribe-Carvajal, S., Ruiz-Granados, Y. G. Mapping the ATP binding site in the plasma membrane H+-ATPase from Kluyveromyces lactis. Journal of fluorescence. 24 (6), 1849-1859 (2014).
  42. Abu-Abed, M., Millet, O., MacLennan, D. H., Ikura, M. Probing nucleotide-binding effects on backbone dynamics and folding of the nucleotide-binding domain of the sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase. The Biochemical Journal. 379, Pt 2 235-242 (2004).
  43. Abu-Abed, M., Mal, T. K., Kainosho, M., MacLennan, D. H., Ikura, M. Characterization of the ATP-binding domain of the sarco(endo)plasmic reticulum Ca2+-ATPase: probing nucleotide binding by multidimensional NMR. Biochemistry. 41 (4), 1156-1164 (2002).
  44. Sazinsky, M. H., Mandal, A. K., Argüello, J. M., Rosenzweig, A. C. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase. Journal of Biological Chemistry. 281 (16), 11161-11166 (2006).
  45. Liu, L., et al. Crystallization and preliminary X-ray studies of the N-domain of the Wilson disease associated protein. Acta Crystallographica Section F: Structural Biology and Crystallization Communications. 65 (6), 621-624 (2009).
  46. Banci, L., et al. The binding mode of ATP revealed by the solution structure of the N-domain of human ATP7A. Journal of Biological Chemistry. 285 (4), 2537-2544 (2010).
  47. Spande, T. F., Witkop, B. Determination of the tryptophan content of proteins with N-bromosuccinimide. Methods in Enzymology. 11, 498-506 (1967).
  48. Spande, T. F., Green, N. M., Witkop, B. The Reactivity toward N-bromosuccinimide of tryptophan in enzymes, zymogens, and inhibited enzymes. Biochemistry. 5 (6), 1926-1933 (1966).
  49. Rawat, U. B., Rao, M. B. Purification, kinetic characterization and involvement of tryptophan residue at the NADPH binding site of xylose reductase from Neurospora crassa. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1293 (2), 222-230 (1996).
  50. Zaki, M. J., Bystroff, C. Protein Structure Prediction. , Humana Press. Totowa, NJ. (2008).
  51. Wang, Z., et al. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics. 18 (18), 12964-12975 (2016).
  52. Pagadala, N. S., Syed, K., Tuszynski, J. Software for molecular docking: A review. Biophysical Reviews. , 91-102 (2017).
  53. Dolatkhah, Z., Javanshir, S., Sadr, A. S., Hosseini, J., Sardari, S. Synthesis, Molecular Docking, Molecular Dynamics Studies, and Biological Evaluation of 4 H -Chromone-1,2,3,4-tetrahydropyrimidine-5-carboxylate Derivatives as Potential Antileukemic Agents. Journal of Chemical Information and Modeling. 57 (6), 1246-1257 (2017).
  54. Forli, S., et al. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols. 11 (5), 905-919 (2016).
  55. Lindahl, E. R. Molecular dynamics simulations. Molecular Modeling of Proteins. Methods in Molecular Biology. 443, 3-23 (2008).
  56. Turk, T., Maček, P., Gubenšek, F. The role of tryptophan in structural and functional properties of equinatoxin II. Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular. 1119 (1), 1-4 (1992).
  57. Peterman, B. F., Laidler, K. J. Study of reactivity of tryptophan residues in serum albumins and lysozyme by N-bromosuccinamide fluorescence quenching. Archives of Biochemistry and Biophysics. 199 (1), 158-164 (1980).
  58. Divita, G., Goody, R. S., Gautheron, D. C., Di Pietro, A. Structural mapping of catalytic site with respect to α-subunit and noncatalytic site in yeast mitochondrial F1-ATPase using fluorescence resonance energy transfer. Journal of Biological Chemistry. 268 (18), 13178-13186 (1993).
  59. Horrocks, W. D., Holmquist, B., Vallee, B. L. Energy transfer between terbium (III) and cobalt (II) in thermolysin: a new class of metal-metal distance probes. Proceedings of the National Academy of Sciences of the United States of America. 72 (12), 4764-4768 (1975).
  60. Chakraborty, J., Das, N., Halder, U. C. Unfolding diminishes fluorescence resonance energy transfer (FRET) of lysine modified β-lactoglobulin: Relevance towards anti-HIV binding. Journal of Photochemistry and Photobiology B: Biology. 102 (1), 1-10 (2011).
  61. Sirangelo, I., Malmo, C., Casillo, M., Irace, G. Resolution of Tryptophan-ANS Fluorescence Energy Transfer in Apomyoglobin by Site-directed Mutagenesis. Photochemistry and Photobiology. 76 (4), 381-384 (2007).
  62. Ribeiro, A. J. M., Tyzack, J. D., Borkakoti, N., Holliday, G. L., Thornton, J. M. A global analysis of function and conservation of catalytic residues in enzymes. Journal of Biological Chemistry. 295 (2), 314-324 (2020).
  63. Eftink, M. R., Ghiron, C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 15 (3), 672-680 (1976).
  64. Eftink, M. R., Ghiron, C. A. Fluorescence quenching of indole and model micelle systems. The Journal of Physical Chemistry. 80 (5), 486-493 (1976).
  65. Kinsley, N., Sayed, Y., Mosebi, S., Armstrong, R. N., Dirr, H. W. Characterization of the binding of 8-anilinonaphthalene sulfonate to rat class Mu GST M1-1. Biophysical Chemistry. 137 (2-3), 100-104 (2008).
  66. Mohsenifar, A., et al. A study of the oxidation-induced conformational and functional changes in neuroserpin. Iranian Biomedical Journal. 11 (1), 41-46 (2007).
  67. Gonzalez, W. G., Miksovska, J. Application of ANS fluorescent probes to identify hydrophobic sites on the surface of DREAM. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1844 (9), 1472-1480 (2014).
  68. Eftink, M. R., Ghiron, C. A. Fluorescence quenching studies with proteins. Analytical Biochemistry. 114 (2), 199-227 (1981).
  69. Poulos, T. L., Price, P. A. The identification of a tryptophan residue essential to the catalytic activity of bovine pancreatic deoxyribonuclease. The Journal of biological chemistry. 246 (12), 4041-4045 (1971).
  70. Hu, J. -J., He, P. -Y., Li, Y. -M. Chemical modifications of tryptophan residues in peptides and proteins. Journal of Peptide Science An Official Publication of the European Peptide Society. 27 (1), 3286 (2021).

Tags

Biyokimya Sayı 176
Tryptophan-ANS FRET Eğitimi için Bir Rekombinant Ca<sup>2 +</sup>-ATPase N-domain'de Triptofan Kalıntısının Kimyasal Modifikasyonu
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Sampedro, J. G., Cataño, Y.More

Sampedro, J. G., Cataño, Y. Chemical Modification of the Tryptophan Residue in a Recombinant Ca2+-ATPase N-domain for Studying Tryptophan-ANS FRET. J. Vis. Exp. (176), e62770, doi:10.3791/62770 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter